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Chapter 2. Subgraphs
2.1. Subgraphs and Supergraphs—Proofs of Theorems
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Theorem 2.1

Theorem 2.1

Theorem 2.1. Let G be a graph in which all vertices have degree at least
two. Then G contains a cycle.

Proof. If G is not simple then it either contains a loop (i.e., a cycle of
length one) or parallel edges (two of which with the same ends form a
cycle of length two). So we can assume without loss of generality that G
is simple.

Let P = v0v1 · · · vk−1vk be a path in G of longest length (which exists
since G is finite). Since vertex vk is of degree at least two by hypothesis
then it has a neighbor v different from vk−1. If v is not on P, then the
path v0v1 · · · vkv is larger than path P, contradicting the choice of P. So
it must be that v = vi for some 0 ≤ i ≤ k − 2. Then G contains the cycle
vivi+1 · · · vkvi .
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Theorem 2.2

Theorem 2.2

Theorem 2.2. Any simple graph G with
∑
v∈V

(
d(v)

2

)
>

(
n

2

)
contains a

quadrilateral.

Proof. Denote by p2 the number of distinct paths of length 2 in G .
Denote by p2(v) the number of such paths whose “central” vertex is v .
Now for a given vertex v where d(v) ≥ 2, we can choose 2-paths with v
as the central vertex in

(d(v)
2

)
different ways.

So for each vertex v we have p2(v) =
(d(v)

2

)
(where we interpret(0

2

)
=

(1
2

)
= 0). Since each 2-path has a unique central vertex, then

p2 =
∑
v∈V

p2(v) =
∑
v∈V

(
d(v)

2

)
. (∗)

Next, each 2-path has a unique pair of end vertices. So we can create sets
of 2-paths where two 2-paths are in the same set if they have the same
end vertices.

() Graph Theory October 1, 2020 4 / 5



Theorem 2.2

Theorem 2.2

Theorem 2.2. Any simple graph G with
∑
v∈V

(
d(v)

2

)
>

(
n

2

)
contains a

quadrilateral.

Proof. Denote by p2 the number of distinct paths of length 2 in G .
Denote by p2(v) the number of such paths whose “central” vertex is v .
Now for a given vertex v where d(v) ≥ 2, we can choose 2-paths with v
as the central vertex in

(d(v)
2

)
different ways.

So for each vertex v we have p2(v) =
(d(v)

2

)
(where we interpret(0

2

)
=

(1
2

)
= 0). Since each 2-path has a unique central vertex, then

p2 =
∑
v∈V

p2(v) =
∑
v∈V

(
d(v)

2

)
. (∗)

Next, each 2-path has a unique pair of end vertices. So we can create sets
of 2-paths where two 2-paths are in the same set if they have the same
end vertices.

() Graph Theory October 1, 2020 4 / 5



Theorem 2.2

Theorem 2.2

Theorem 2.2. Any simple graph G with
∑
v∈V

(
d(v)

2

)
>

(
n

2

)
contains a

quadrilateral.

Proof. Denote by p2 the number of distinct paths of length 2 in G .
Denote by p2(v) the number of such paths whose “central” vertex is v .
Now for a given vertex v where d(v) ≥ 2, we can choose 2-paths with v
as the central vertex in

(d(v)
2

)
different ways.

So for each vertex v we have p2(v) =
(d(v)

2

)
(where we interpret(0

2

)
=

(1
2

)
= 0). Since each 2-path has a unique central vertex, then

p2 =
∑
v∈V

p2(v) =
∑
v∈V

(
d(v)

2

)
. (∗)

Next, each 2-path has a unique pair of end vertices. So we can create sets
of 2-paths where two 2-paths are in the same set if they have the same
end vertices.

() Graph Theory October 1, 2020 4 / 5



Theorem 2.2

Theorem 2.2 (continued)

Theorem 2.2. Any simple graph G with
∑
v∈V

(
d(v)

2

)
>

(
n

2

)
contains a

quadrilateral.

Proof (continued). There are then
(n
2

)
such sets (though some could be

empty). We have hypothesized
∑
v∈V

(
d(v)

2

)
>

(
n

2

)
. So by (∗), p2 >

(n
2

)
and by the Pigeonhole Principle one of the sets of 2-paths with common
end vertices must contain at least two 2-paths. Since these two 2-paths
have different central vertices (because they are elements of a set) then
the union of these two 2-paths forms a quadrilateral that is contained in
G , as claimed.
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