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2 Theorem 2.4

3 Theorem 2.5

() Graph Theory September 27, 2022 2 / 10



Theorem 2.3 Rédi’s Theorem.

Theorem 2.3. Rédi’s Theorem.

Theorem 2.3. Rédi’s Theorem. Every tournament has a directed
Hamilton path.

Proof. We give an inductive proof. The trivial tournament (on one
vertex) has a directed Hamilton path (of length 0), so the result holds for
a tournament of order 1. Hypothesize that for some integer n ≥ 2, every
tournament on n − 1 vertices has a directed Hamilton path (this is the
induction hypothesis). Let T be a tournament on n vertices and let
v ∈ V (T ). The digraph T ′ = T − v is a tournament on n− 1 vertices. By
the induction hypothesis, T ′ has a directed Hamilton path, say
P ′ = (v1, v2, . . . , vn−1). We now go through three cases.

(1) If (v , v1) is an arc of T , the path (v , v1, v2, . . . , vn−1) is a directed
Hamilton path of T .

(2) If (vn−1, v) is an arc of T , the path (v1, v2, . . . , vn−1, v) is a directed
Hamilton path of T .
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Theorem 2.3 Rédi’s Theorem.

Theorem 2.3 (continued 1)

Proof (continued).
(3) If neither (v , v1) nor (vn−1, v) is an arc of T then (since T is a
tournament; i.e., an orientation of Kn) then both (v1, v) and (v , vn−1)
must be arcs of T . That is, there is an arc from path P ′ to vertex v with
tail v1, and there is an arc from vertex v to path P ′ with head vn−1. For
each of v2, v3, . . . , vn−2, there is either an arc from v to vi or from vi to v
(but not both) for i = 2, 3, . . . , n − 2. Since arc (v1, v) goes from P ′ to v
and arc (v , vn−1) goes from v to P ′, then there must be some
i ∈ {1, 2, . . . , n − 2} such that (vi , v) and (v , vi+1) are arcs of T (where
the arcs “change” from going from P ′ to going to P ′):
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Theorem 2.3 Rédi’s Theorem.

Theorem 2.3 (continued 2)

Theorem 2.3. Rédi’s Theorem. Every tournament has a directed
Hamilton path.

Proof (continued). Then the path (v1, v2, . . . , vi , v , vi+1, . . . , vn−1) is a
directed Hamilton path of T .

Since T is a tournament, at least one of (1), (2), or (3) must hold and so
a tournament on n vertices has a Hamilton path. Therefore, by
mathematical induction, the result holds for all n ∈ N and every
tournament has a Hamilton path, as claimed.
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Theorem 2.4

Theorem 2.4

Theorem 2.4. Every loopless graph G contains a spanning bipartite
subgraph F such that dF (v) ≥ 1

2dG (v) for all v ∈ V .

Proof. Let G be a loopless graph. The empty spanning subgraph (i.e., the
subgraph with no edges) is a spanning bipartite subgraph of G . Let
F = F [X ,Y ] be a spanning bipartite subgraph of G with the greatest
possible number of edges (since G is finite, such a subgraph exists).

ASSUME there is a vertex of v in F [X ,Y ] such that dF (v) < 1
2dG (v); say

v ∈ X . Consider the spanning bipartite subgraph
F ′ = F ′[X \ {v},Y ∪ {v}] whose edge set consists of all edges of G with
one end in X \ {v} and the other end in Y ∪ {v}. The edge set of F ′ is
the same as that of F except for the edges of G incident to v . Edges of G
incident to v which are in F = F [X ,Y ] are also incident to some y ∈ Y
and so are not in F ′ = F ′[X \ {v},Y ∪{v}]. Edges in G which are incident
to v and are in F ′ = F ′[X \ {v},Y ∪ {v}] are also incident to some
x ′ ∈ X \ {v} and so are not in F = F [X ,Y ] since both v and x ′ are in X .
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Theorem 2.4

Theorem 2.4 (continued)

Proof (continued). Symbolically, E (F ′) = (E (F ) \ {e ∈ E (F ) | e is
incident to v}) ∪· {e ∈ E (G ) | e is incident to v and e 6∈ E (F )}. Now,

dF (v) = |{e ∈ E (F ) | e is incident to v}| and

dG (v) = |{e ∈ E (F ) | e is incident to v}|

+|{e ∈ E (G ) | e is incident to v and e 6∈ E (F )}|,
so |{e ∈ E (G )|e is incident to v and e 6∈ E (F )}| = dG (v)− dF (v). Hence

e(F ′) = |E (F ′)| = (e(F )− dF (v)) + (dG (v)− dF (v))

= e(F ) + (dG (v)− 2dF (v)) > e(F )

where the inequality holds because we assumed dF (v) < 1
2dG (v). But this

is a CONTRADICTION to the fact that F = F [X ,Y ] is a spanning
bipartite subgraph of G with the greatest possible number of edges. So
the assumption that dF (v) < 1

2dG (v) for some v ∈ V (F [X ,Y ]) is false
and it must be that dF (v) ≥ 1

2dG (v) for all vertices v in F = F [X ,Y ], as
claimed.
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Theorem 2.5

Theorem 2.5

Theorem 2.5. Every graph with average degree at least 2k, where k ∈ N,
has an induced subgraph with minimum degree at least k + 1.

Proof. Let G be a graph with average degree d(G ) ≥ 2k. Let H be an
induced subgraph of G with the largest possible average degree (which
exists since G is a finite graph; and there are only finitely many such H
since G only has finitely many induced subgraphs). Among such induced
subgraphs H, choose one with the smallest number of vertices (which
exists since there are only finitely many such H) and denote it as F .

Since
F is a subgraph of G of largest possible average degree and G is a
subgraph of itself then d(F ) ≥ d(G ). If v(F ) = 1 then δ(F ) = d(F ).
Hence δ(F ) = d(F ) ≥ d(G ) ≥ 2k ≥ k + 1 since k ∈ N. So the result
holds when v(F ) = 1. So we now suppose v(F ) > 1.
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Theorem 2.5

Theorem 2.5 (continued 1)

Proof (continued). ASSUME dF (v) ≤ k for some vertex v of F .
Consider the vertex-deleted subgraph F ′ = F − v . Note that F ′ is also an
induced subgraph of G and v(F ′) < v(F ). So by the choice of F

d(F ) > d(F ′). (∗)

Moreover

d(F ′) =

∑
v∈V (F ′) d(v)

|V (F ′)|
=

2e(F ′)

v(F ′)
by Theorem 1.1

=
2e(F ′)

v(F )− 1
≥ 2(e(F )− k)

v(F )− 1
since dF (v) ≤ k

≥ 2e(F )− d(G )

v(F )− 1
since d(G ) ≥ 2k by hypothesis

≥ 2e(F )− d(F )

v(F )− 1
since d(F ) ≥ d(G ) as argued above . . .
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Theorem 2.5

Theorem 2.5 (continued 2)

Proof (continued). . . .

d(F ′) ≥ 2e(F )− d(F )

v(F )− 1
since d(F ) ≥ d(G ) as argued above

=

∑
v∈V (F ) d(v)−

∑
v∈V (F ) d(v)/v(F )

v(F )− 1
by Theorem 1.1

=
v(F )

∑
v∈V (F ) d(v)−

∑
v∈V (F ) d(v)

v(F )(v(F )− 1)

=
(v(F )− 1)

∑
v∈V (F ) d(v)

v(F )(v(F )− 1)
=

∑
v∈V (F ) d(v)

v(F )
= d(F ).

But we know d(F ) > d(F ′) from (∗) (and the choice of F ), a
CONTRADICTION. So the assumption that dF (v) ≤ k for some vertex v
of F is false and hence F is an induced subgraph of G such that dF (v) > k
(or equivalently dF (v) ≥ k + 1) for all vertices v in F , as claimed.
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