Graph Theory

Chapter 2. Subgraphs

2.4. Decompositions and Coverings-Proofs of Theorems

Table of contents

(1) Theorem 2.7 Veblen's Theorem.
(2) Theorem 2.8

Theorem 2.7. Veblen's Theorem.

Theorem 2.7. Veblen's Theorem. A graph admits a cycle decomposition if and only if it is even.

Proof. The necessary condition is given above (based on a degree argument). We now establish sufficiency inductively on $e(G)$.

Theorem 2.7. Veblen's Theorem.

Theorem 2.7. Veblen's Theorem. A graph admits a cycle decomposition if and only if it is even.
Proof. The necessary condition is given above (based on a degree argument). We now establish sufficiency inductively on $e(G)$. Suppose that G is even. If G is empty (no edges) then $E(G)$ is decomposed by the empty family of cycles (this is the base case). Suppose every even graph with less than n edges admits a cycle decomposition (this is the induction hypothesis) and consider an even graph G with n edges where $n>0$. Consider the subgraph F of G where F is the subgraph of G induced by the set of vertices of positive degree in G (so F is simply graph G with the vertices of G of degree 0 deleted). Since G is even, then F is also even and so every vertex of F is of degree 2 or more.

Theorem 2.7. Veblen's Theorem.

Theorem 2.7. Veblen's Theorem. A graph admits a cycle decomposition if and only if it is even.

Proof. The necessary condition is given above (based on a degree argument). We now establish sufficiency inductively on $e(G)$. Suppose that G is even. If G is empty (no edges) then $E(G)$ is decomposed by the empty family of cycles (this is the base case). Suppose every even graph with less than n edges admits a cycle decomposition (this is the induction hypothesis) and consider an even graph G with n edges where $n>0$. Consider the subgraph F of G where F is the subgraph of G induced by the set of vertices of positive degree in G (so F is simply graph G with the vertices of G of degree 0 deleted). Since G is even, then F is also even and so every vertex of F is of degree 2 or more. By Theorem
2.1, F contains a cycle C. The subgraph $G^{\prime}=G \backslash E(C)$ is even and has fewer edges than G (i.e., $e\left(G^{\prime}\right)<n$). By the induction hypothesis, G^{\prime} has a cycle decomposition \mathcal{C}^{\prime}. Therefore G has a cycle decomposition, namely $\mathcal{C}=\mathcal{C}^{\prime} \cup\{C\}$, as claimed.

Theorem 2.7. Veblen's Theorem.

Theorem 2.7. Veblen's Theorem. A graph admits a cycle decomposition if and only if it is even.

Proof. The necessary condition is given above (based on a degree argument). We now establish sufficiency inductively on $e(G)$. Suppose that G is even. If G is empty (no edges) then $E(G)$ is decomposed by the empty family of cycles (this is the base case). Suppose every even graph with less than n edges admits a cycle decomposition (this is the induction hypothesis) and consider an even graph G with n edges where $n>0$. Consider the subgraph F of G where F is the subgraph of G induced by the set of vertices of positive degree in G (so F is simply graph G with the vertices of G of degree 0 deleted). Since G is even, then F is also even and so every vertex of F is of degree 2 or more. By Theorem 2.1, F contains a cycle C. The subgraph $G^{\prime}=G \backslash E(C)$ is even and has fewer edges than G (i.e., $e\left(G^{\prime}\right)<n$). By the induction hypothesis, G^{\prime} has a cycle decomposition \mathcal{C}^{\prime}. Therefore G has a cycle decomposition, namely $\mathcal{C}=\mathcal{C}^{\prime} \cup\{C\}$, as claimed.

Theorem 2.8

Theorem 2.8. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ be a decomposition of K_{n} into complete bipartite graphs. Then $k \geq n-1$.

Proof. Let $V=V\left(K_{n}\right)$ and let complete bipartite graph F_{i} have bipartition $\left(X_{i}, Y_{i}\right)$ for $1 \leq i \leq k$. Introduce n variables indexed by the vertices $v \in V$, denoted x_{v}. Consider the following system of $k+1$ homogeneous linear equations in the n variables x_{v} where $v \in V$:

$$
\sum_{v \in V} x_{v}=0, \text { and } \sum_{v \in X_{i}} x_{v}=0 \text { for } 1 \leq i \leq k .
$$

Theorem 2.8

Theorem 2.8. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ be a decomposition of K_{n} into complete bipartite graphs. Then $k \geq n-1$.

Proof. Let $V=V\left(K_{n}\right)$ and let complete bipartite graph F_{i} have bipartition $\left(X_{i}, Y_{i}\right)$ for $1 \leq i \leq k$. Introduce n variables indexed by the vertices $v \in V$, denoted x_{v}. Consider the following system of $k+1$ homogeneous linear equations in the n variables x_{v} where $v \in V$:

$$
\sum_{v \in V} x_{v}=0, \text { and } \sum_{v \in X_{i}} x_{v}=0 \text { for } 1 \leq i \leq k
$$

ASSUME $k<n-1$. Then this system consists of fewer than n equations (namely, $k+1<n$ equations) in n variables. Then by the "Fewer Equations than Unknowns" theorem (see my online notes for Linear Algebra [MATH 2010] on 1.6. Homogeneous Systems, Subspaces, and Bases; see Corollaries 1 and 2), the system has a nontrivial solution, $x_{v}=c_{v}$ where $v \in V$ and $c_{v} \neq 0$ for at least one $v \in V$.

Theorem 2.8

Theorem 2.8. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ be a decomposition of K_{n} into complete bipartite graphs. Then $k \geq n-1$.

Proof. Let $V=V\left(K_{n}\right)$ and let complete bipartite graph F_{i} have bipartition $\left(X_{i}, Y_{i}\right)$ for $1 \leq i \leq k$. Introduce n variables indexed by the vertices $v \in V$, denoted x_{v}. Consider the following system of $k+1$ homogeneous linear equations in the n variables x_{v} where $v \in V$:

$$
\sum_{v \in V} x_{v}=0, \text { and } \sum_{v \in X_{i}} x_{v}=0 \text { for } 1 \leq i \leq k
$$

ASSUME $k<n-1$. Then this system consists of fewer than n equations (namely, $k+1<n$ equations) in n variables. Then by the "Fewer Equations than Unknowns" theorem (see my online notes for Linear Algebra [MATH 2010] on 1.6. Homogeneous Systems, Subspaces, and Bases; see Corollaries 1 and 2), the system has a nontrivial solution, $x_{v}=c_{v}$ where $v \in V$ and $c_{v} \neq 0$ for at least one $v \in V$.

Theorem 2.8 (continued 1)

Proof (continued). Then

$$
\begin{equation*}
\sum_{v \in V} c_{v}=0 \text { and } \sum_{v \in X_{i}} c_{v}=0 \text { for } 1 \leq i \leq k \tag{*}
\end{equation*}
$$

Next, for each edge $v w \in E\left(K_{n}\right)$, we consider the number $c_{v} c_{w}$. We sum these numbers in two ways. First, simply sum as $\sum_{v w \in E\left(K_{n}\right)} c_{V} c_{w}$ and second sum using the fact that \mathcal{F} is a decomposition of K_{n}. In the second sum, for $F_{i} \in \mathcal{F}$ with bipartition $\left(X_{i}, Y_{i}\right)$ we have all edges of the form $v w$ where $v \in X$ and $w \in Y$ so that

$$
\sum_{v w \in E\left(F_{i}\right)} c_{v} c_{w}=\left(\sum_{v \in X_{i}} c_{v}\right)\left(\sum_{w \in Y_{i}} c_{w}\right)
$$

then the sum over all edges in the $F_{i} S$ (and so all edges of K_{n}) is

Theorem 2.8 (continued 1)

Proof (continued). Then

$$
\begin{equation*}
\sum_{v \in V} c_{v}=0 \text { and } \sum_{v \in X_{i}} c_{v}=0 \text { for } 1 \leq i \leq k \tag{*}
\end{equation*}
$$

Next, for each edge $v w \in E\left(K_{n}\right)$, we consider the number $c_{v} c_{w}$. We sum these numbers in two ways. First, simply sum as $\sum_{v w \in E\left(K_{n}\right)} c_{v} c_{w}$ and second sum using the fact that \mathcal{F} is a decomposition of K_{n}. In the second sum, for $F_{i} \in \mathcal{F}$ with bipartition $\left(X_{i}, Y_{i}\right)$ we have all edges of the form $v w$ where $v \in X$ and $w \in Y$ so that

$$
\sum_{v w \in E\left(F_{i}\right)} c_{v} c_{w}=\left(\sum_{v \in X_{i}} c_{v}\right)\left(\sum_{w \in Y_{i}} c_{w}\right)
$$

then the sum over all edges in the $F_{i} \mathrm{~s}$ (and so all edges of K_{n}) is

$$
\sum_{i=1}^{k}\left(\sum_{v \in X_{i}} c_{v}\right)\left(\sum_{w \in Y_{i}} c_{w}\right)
$$

Theorem 2.8 (continued 2)

Proof (continued). So we must have

$$
\sum_{v, w \in V, v \neq w} c_{v} c_{w}=\sum_{v w \in E\left(K_{n}\right)} c_{v} c_{w}=\sum_{i=1}^{k}\left(\sum_{v \in X_{i}} c_{v}\right)\left(\sum_{w \in Y_{i}} c_{w}\right) . \quad(* *)
$$

Therefore

Theorem 2.8 (continued 2)

Proof (continued). So we must have

$$
\sum_{v, w \in V, v \neq w} c_{V} c_{w}=\sum_{v w \in E\left(K_{n}\right)} c_{v} c_{w}=\sum_{i=1}^{k}\left(\sum_{v \in X_{i}} c_{v}\right)\left(\sum_{w \in Y_{i}} c_{w}\right) \cdot(* *)
$$

Therefore

$$
\begin{aligned}
0= & \left(\sum_{v \in V} c_{v}\right)^{2} \text { by }(*) \\
= & \left(\sum_{v \in V} c_{v}\right)\left(\sum_{v \in V} c_{v}\right) \\
= & \sum_{v \in V} c_{v}^{2}+2 \sum_{v, w \in V, v \neq w} c_{v} c_{w} \text { because for real numbers } x_{i} \\
& 1 \leq i \leq m \text { we have }\left(\sum_{i=1}^{m} x_{i}\right)^{2}=\sum_{i=1}^{m} x_{i}^{2}+2 \sum_{i=1, j=1, i \neq j}^{m} x_{i} x_{j}
\end{aligned}
$$

Theorem 2.8 (continued 3)

Proof (continued).

$$
\begin{aligned}
0 & =\sum_{v \in V} c_{v}^{2}+2 \sum_{v, w \in V, v \neq w} c_{v} c_{w} \\
& =\sum_{v \in V} c_{v}^{2}+2 \sum_{i=1}^{k}\left(\sum_{v \in X_{i}} c_{v}\right)\left(\sum_{v \in Y_{i}} c_{w}\right) \text { by }(* *) \\
& =\sum_{v \in V} c_{v}^{2} \text { since } \sum_{v \in X_{i}} c_{v}=0 \text { for } 1 \leq i \leq k \text { by }(*) \\
& >0 \text { since some } c_{v} \neq 0,
\end{aligned}
$$

a CONTRADICTION. So the assumption that $k<n-1$ is false and we must have $k \geq n-1$, as claimed.

