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Corollary 2.21

Corollary 2.21

Corollary 2.21. For any two graphs F and G, the number of subgraphs of
G that are isomorphic to F and includes a given vertex v is a
reconstructible parameter.

Proof. The number of subgraphs of G that are isomorphic to F is </€)

F
subgraphs of G that are isomorphic to F and include vertex v is

G G—-v ) G\ . . ,
(F) — < r > Since <F> is a reconstructible parameter by Kelly's

The number of these that exclude vertex v is . So the number of

Lemma (Lemma 2.20) and is a parameter of G — v, then

O

G G—v\ . . .
£~ s is a reconstructible parameter, as claimed.
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Lemma 2.20. Kelly's Lemma

Lemma 2.20

Lemma 2.20. KELLY’S LEMMA. For any two graphs F and G such that

v(F) < v(G), the parameter (G

F) is a reconstructible parameter.

Proof. A given copy of F in G appears in the vertex-deleted subgraph

G — v if and only if v is not a vertex of F. Now there are v(G)
vertex-deleted subgraphs of G of the born G — v (one for each v € V(G))
and v(F) of these do not contain F (the G — v where v € V/(F)). Now

. . H G_V G_V
the numberofCOp|95°fF'nG_Vls( F ).The” e%(:c)< F )

counts all copies of F in G, but includes each copy v(G) — v(F) times. So
we have G\t Z G-v Since 6
F)  v(G)—v(F) F ) F
veV(G)
v _ G\ .
> (and properties of G and F) then <F> is a

reconstructible parameter.

is a function

of the parameter <
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Corollary 2.22

Corollary 2.22

Corollary 2.22. The size and the degree sequence are reconstructible
parameters.

Proof. The size of graph G is m = e(G) = (G and so is a

K>

constructible parameter by Kelly's Lemma (Lemma 2.20). With F = Kj,
Corollary 2.21 implies that the number of edges in G that include a vertex
v is a constructible parameter. But this parameter is just the degree of v.
So the degree of each vertex of G (and hence the degree sequence of G) is
a constructible parameter, as claimed. O
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Theorem 2.25

Theorem 2.25. THE MOBIUS INVERSION FORMULA.

Let f : 27 — R (here, 27 represents the power set of T, 27 = P(T)) be
a real-valued function defined on the subsets of a finite set T. Define the
function g : 27 = R by g(S) =Y scxcr f(X). Thenforall SC T,

f(S)= > (DX Flg(x).

SCXCT

Proof. First, by the Binomial Theorem, for n € N we have

o=+ 0y =3 (F)arteu =3 (7)ev

k=0 k=0
n n
g —_ _1 k—S
> () > (,)en
0<k<n s<k<n+s
where s € NU {0} is any constant.
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Theorem 2.25 (continued 2)

Proof (continued). Now (x) holds for given finite set Y and any S C Y.
With set Y fixed, S ranging over all subsets of Y (except S =Y), and X
ranging over all sets that ae supersets of given set S and subsets of Y, we
have from (x) that

0= S [ 3 (yx-s

Sc£Y \SCXCy

- Z (-1

SCXCY,S#Y
and X range over all sets satisfying S C X C Y and X # Y.

Of course if S=Y then S C X C Y implies S = X = Y and

Z (—1)XI=Is]
scxXCy - 0
T (cpXis :{ :

XCXCY

)|X|_|5| where set Y is fixed and sets S

= 1. So for any finite set Y, we have
ifS#Y
ifS=Y.
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Theorem 2.25 (continued 1)

Proof (continued). Now for given set Y and S C Y there are
(!Y! - |5!>
[X] =15
set X by choosing | X| — |S| elements of set Y \ S and then X consists of

these elements along with the elements of set S). So for given finite sets S
and Y where SC Y, |S|=s5s,and n=|Y|—|S| # @ (so that S # Y) we

sets X with |[X| =k and S C X C Y (since we create such a

have
-3 (e

schamps K3

= Z (—1)X1=5 where X ranges over the <B</|| a z) sets
s<|X|<n+s
that are supersets of S and subsets of Y

= Z (—=1)XI=15I where X is as above. (%)
ISI<IXI<|Y]
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Theorem 2.25 (continued 3)

Proof (continued). Therefore

fS) = > fM| > ()X since the quantity

ScycT SCXCY
in parentheses is 0 except when Y = 5§

— Z Z FY)(—D)XI=IST = Z F(Y)(—1)XI=1S]
SCYCT SCXCY SCXCYCT

— Z Z DIXI=ISTe(y)
SCXCT XCYCT

= 3 )RS A
SCXCT XCYCT

= Z (—1)XI=1SIg(X) by the definition of g,
SCXCT

as claimed. m
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Lemma 2.26

Lemma 2.26. NASH-WILLIAMS’ LEMMA.
Let G be a graph, F a spanning subgraph of G, and H an edge
reconstruction of G that is not isomorphic to G. Then

G = Glr — G — Hlr = (~1)%(O)«Pauy(G).

Proof. Since F is a subgraph of G, by (2.6) and (2.7) we have
H
Z |G — H|x = aut(G)(l__>. Now define f(X) = |G — H|x so that
FCXCG
f maps 2E(G) (the power set of the edge set of G) into R. Define

g(F) = > f(X)= Y 16— Hx
FCXCG FCXCG
— |F — H| by (2.6).
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Lemma 2.26. Nash-Williams' Lemma

Lemma 2.26 (continued 2)

Proof (continued). Now H is an edge reconstruction of G by hypothesis
so for each X C G (where e(X) < e(G)) we have by Kelly's Lemma Edge

H
Version (Lemma 2.24) that ()G<> = (X) So we then have

G — Gl — |G — Hl|p = (~1)(©)—e(Aayt <<g> B (g))

= (—1)6(©)=e(Flayt(G)

where the last equality holds because (g) =1, and (g) = 0 since

e(H) = e(G) but h % G by hypothesis. So the equation holds, as
claimed. O
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Lemma 2.26. Nash-Williams' Lemma

Lemma 2.26 (continued 1)

Proof (continued). Then by the Mdbius Inversion Formula (Theorem
2.25)

() = Y D) = Y ()0 Ex —
FCXCG FCXCG
_ (—1)X-<Pauex) () by 2.7).
> 2w () by

By the definition of f, f(F) =|G — H|g, so we have

G —Hlp= > (-1)*Faut(x) (;’)

FCXCG
Therefore,
6= 6le=16—~ Hie = Y (-0 Paunx) ((3) - ()
FCXCG X X

Theorem 2.27

Theorem 2.27

Theorem 2.27. A graph G is edge reconstructible if there exists a
spanning subgraph F of G such that either of the following two conditions
holds:
(i) |G — H|F takes the same value for all edge reconstructions
H of G.
(i) |[F — G| < 25(C)=e(A)~13ut(G).

Proof. Let H be an edge reconstruction of G. We show that each of the
two given conditions contradict Nash-Williams’ Lemma so that we can
conclude that H = G and hence G is reconstructible.

Suppose condition (i) holds and ASSUME H 22 G. Then the Nash
Williams' Lemma, which gives

G — GlF — |G = HlF — (-1)*97Paut(G),

implies |G — G|r — |G — H|r = 0 (since G is a reconstruction of G), but
(—1)¢(©)=¢(Faut(G) # 0, a CONTRADICTION.
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Theorem 2.27 (continued 1)

Proof (continued). So the assumption that H 22 G is false and we must
have H = G. That is, G is reconstructible, as claimed.

Suppose condition (ii) holds and ASSUME H 2 G. Then
> 16— Glx = |F— G|by(26)
FCXCG
< 2¢(6)=e(A~13,t(G) by condition (ii). ()
We now count the number of graphs X which satisfy F C X C G. Such a
graph X must contain all edges of F and none, some, or all of the edges in
E(G) \ E(F). Since |[E(G) \ E(F)| = e(G) — e(F) then there are
2¢(6)—e(F) possible graphs X. Index these 2¢(G)—e(F) graphs as X; for
i=1,2,...,2¢6)=¢(F) Defining x; = |G — G|x,, (*) implies

2¢e(G)—e(F) 2¢e(G)—e(f)
Y 166Gl = > xi<elO P Tau(G).  (xx)
i=1 i=1
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Theorem 2.27 (continued 3)

Proof (continued). Then with F = X in Nash-Williams' Lemma (Lemma
2.26; we have assumed H % G) we have

|G — G|x — |G — Hlx = (—1)¢9¢Faut(G)
= aut(G) since ¢(G) — e(X) is even
< aut(G) — |G — H|x since
|G — G|x < aut(G).

But this implies that 0 < —|G — H|x, a CONTRADICTION since
|G — H|x > 0. So the assumption that H % G is false and we must have
H = G. Thatis, G is reconstructible, as claimed. O
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Theorem 2.27

Theorem 2.27 (continued 2)

Proof (continued). ASSUME half or more of the x; satisfy x; > aut(G).

Then
2e(G)—e(F)

> X =290 F)auy(6),

i=1
CONTRADICTING (x%). So we must have less than half of the x;
satisfying x; > aut(G) and hence we must have more than half of the x;
satisfying x; < aut(G). Now e(G) — e(F) (when X; = F) where at least
half of the values are even (exactly half when e(G) — e(F) is odd and
more than half when e(G) — e(F) is even). Since more than half of the x;
satisfy x; < aut(G), there must be some index i* where
X« = |G — Glx,. <aut(G) and e(G) — e(X;-) is even. Denote this X;- as
X.
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