Graph Theory

Chapter 2. Subgraphs 2.7. Graph Reconstruction—Proofs of Theorems

Table of contents

- 1 Lemma 2.20. Kelly's Lemma
- 2 Corollary 2.21
- 3 Corollary 2.22
- 4 Theorem 2.25. Möbius Inversion Formula
- 5 Lemma 2.26. Nash-Williams' Lemma

6 Theorem 2.27

Lemma 2.20. KELLY'S LEMMA. For any two graphs F and G such that v(F) < v(G), the parameter $\begin{pmatrix} G \\ F \end{pmatrix}$ is a reconstructible parameter.

Proof. A given copy of *F* in *G* appears in the vertex-deleted subgraph G - v if and only if *v* is not a vertex of *F*. Now there are v(G) vertex-deleted subgraphs of *G* of the born G - v (one for each $v \in V(G)$) and v(F) of these do not contain *F* (the G - v where $v \in V(F)$). Now the number of copies of *F* in G - v is $\binom{G - v}{F}$.

Lemma 2.20. KELLY'S LEMMA. For any two graphs F and G such that v(F) < v(G), the parameter $\begin{pmatrix} G \\ F \end{pmatrix}$ is a reconstructible parameter.

Proof. A given copy of *F* in *G* appears in the vertex-deleted subgraph G - v if and only if v is not a vertex of F. Now there are v(G)vertex-deleted subgraphs of G of the born G - v (one for each $v \in V(G)$) and v(F) of these do not contain F (the G - v where $v \in V(F)$). Now the number of copies of F in G - v is $\begin{pmatrix} G - v \\ F \end{pmatrix}$. Then $\sum_{v \in V(G)} \begin{pmatrix} G - v \\ F \end{pmatrix}$ counts all copies of F in G, but includes each copy v(G) - v(F) times. So we have $\binom{G}{F} = \frac{1}{v(G) - v(F)} \sum_{v \in V(G)} \binom{G - v}{F}$. Since $\binom{G}{F}$ is a function of the parameter $\begin{pmatrix} G - v \\ F \end{pmatrix}$ (and properties of G and F) then $\begin{pmatrix} G \\ F \end{pmatrix}$ is a reconstructible parameter.

- ()

Lemma 2.20. KELLY'S LEMMA. For any two graphs F and G such that v(F) < v(G), the parameter $\begin{pmatrix} G \\ F \end{pmatrix}$ is a reconstructible parameter.

Proof. A given copy of *F* in *G* appears in the vertex-deleted subgraph G - v if and only if v is not a vertex of F. Now there are v(G)vertex-deleted subgraphs of G of the born G - v (one for each $v \in V(G)$) and v(F) of these do not contain F (the G - v where $v \in V(F)$). Now the number of copies of F in G - v is $\begin{pmatrix} G - v \\ F \end{pmatrix}$. Then $\sum_{v \in V(G)} \begin{pmatrix} G - v \\ F \end{pmatrix}$ counts all copies of F in G, but includes each copy v(G) - v(F) times. So we have $\binom{G}{F} = \frac{1}{v(G) - v(F)} \sum_{v \in V(G)} \binom{G - v}{F}$. Since $\binom{G}{F}$ is a function of the parameter $\begin{pmatrix} G - v \\ F \end{pmatrix}$ (and properties of G and F) then $\begin{pmatrix} G \\ F \end{pmatrix}$ is a reconstructible parameter.

C

Corollary 2.21

Corollary 2.21. For any two graphs F and G, the number of subgraphs of G that are isomorphic to F and includes a given vertex v is a reconstructible parameter.

Proof. The number of subgraphs of G that are isomorphic to F is $\begin{pmatrix} G \\ F \end{pmatrix}$. The number of these that exclude vertex v is $\begin{pmatrix} G - v \\ F \end{pmatrix}$. So the number of subgraphs of G that are isomorphic to F and include vertex v is $\begin{pmatrix} G \\ F \end{pmatrix} - \begin{pmatrix} G - v \\ F \end{pmatrix}$. Since $\begin{pmatrix} G \\ F \end{pmatrix}$ is a reconstructible parameter by Kelly's Lemma (Lemma 2.20) and $\begin{pmatrix} G - v \\ F \end{pmatrix}$ is a parameter of G - v, then $\begin{pmatrix} G \\ F \end{pmatrix} - \begin{pmatrix} G - v \\ F \end{pmatrix}$ is a reconstructible parameter, as claimed.

Corollary 2.21

Corollary 2.21. For any two graphs F and G, the number of subgraphs of G that are isomorphic to F and includes a given vertex v is a reconstructible parameter.

Proof. The number of subgraphs of G that are isomorphic to F is $\begin{pmatrix} G \\ F \end{pmatrix}$. The number of these that exclude vertex v is $\begin{pmatrix} G - v \\ F \end{pmatrix}$. So the number of subgraphs of G that are isomorphic to F and include vertex v is $\begin{pmatrix} G \\ F \end{pmatrix} - \begin{pmatrix} G - v \\ F \end{pmatrix}$. Since $\begin{pmatrix} G \\ F \end{pmatrix}$ is a reconstructible parameter by Kelly's Lemma (Lemma 2.20) and $\begin{pmatrix} G - v \\ F \end{pmatrix}$ is a parameter of G - v, then $\begin{pmatrix} G \\ F \end{pmatrix} - \begin{pmatrix} G - v \\ F \end{pmatrix}$ is a reconstructible parameter, as claimed.

Corollary 2.22. The size and the degree sequence are reconstructible parameters.

Proof. The size of graph G is $m = e(G) = \begin{pmatrix} G \\ K_2 \end{pmatrix}$ and so is a

constructible parameter by Kelly's Lemma (Lemma 2.20). With $F = K_2$, Corollary 2.21 implies that the number of edges in *G* that include a vertex *v* is a constructible parameter. But this parameter is just the degree of *v*. So the degree of each vertex of *G* (and hence the degree sequence of *G*) is a constructible parameter, as claimed. **Corollary 2.22.** The size and the degree sequence are reconstructible parameters.

Proof. The size of graph *G* is $m = e(G) = \begin{pmatrix} G \\ K_2 \end{pmatrix}$ and so is a constructible parameter by Kelly's Lemma (Lemma 2.20). With $F = K_2$, Corollary 2.21 implies that the number of edges in *G* that include a vertex *v* is a constructible parameter. But this parameter is just the degree of *v*. So the degree of each vertex of *G* (and hence the degree sequence of *G*) is a constructible parameter, as claimed.

Theorem 2.25. THE MÖBIUS INVERSION FORMULA. Let $f : 2^T \to \mathbb{R}$ (here, 2^T represents the power set of T, $2^T = \mathcal{P}(T)$) be a real-valued function defined on the subsets of a finite set T. Define the function $g : 2^T \to \mathbb{R}$ by $g(S) = \sum_{S \subseteq X \subseteq T} f(X)$. Then for all $S \subseteq T$,

$$f(S) = \sum_{S \subseteq X \subseteq T} (-1)^{|X| - |S|} g(X).$$

Proof. First, by the Binomial Theorem, for $n \in \mathbb{N}$ we have

$$D = (1 + (-1))^n = \sum_{k=0}^n \binom{n}{k} (1)^{n-k} (-1)^k = \sum_{k=0}^n \binom{n}{k} (-1)^k$$
$$= \sum_{0 \le k \le n} \binom{n}{k} (-1)^k = \sum_{s \le k \le n+s} \binom{n}{k-s} (-1)^{k-s}$$

where $s \in \mathbb{N} \cup \{0\}$ is any constant.

Theorem 2.25. THE MÖBIUS INVERSION FORMULA. Let $f : 2^T \to \mathbb{R}$ (here, 2^T represents the power set of T, $2^T = \mathcal{P}(T)$) be a real-valued function defined on the subsets of a finite set T. Define the function $g : 2^T \to \mathbb{R}$ by $g(S) = \sum_{S \subseteq X \subseteq T} f(X)$. Then for all $S \subseteq T$,

$$f(S) = \sum_{S \subseteq X \subseteq T} (-1)^{|X| - |S|} g(X).$$

Proof. First, by the Binomial Theorem, for $n \in \mathbb{N}$ we have

$$D = (1 + (-1))^n = \sum_{k=0}^n \binom{n}{k} (1)^{n-k} (-1)^k = \sum_{k=0}^n \binom{n}{k} (-1)^k$$
$$= \sum_{0 \le k \le n} \binom{n}{k} (-1)^k = \sum_{s \le k \le n+s} \binom{n}{k-s} (-1)^{k-s}$$

where $s \in \mathbb{N} \cup \{0\}$ is any constant.

Theorem 2.25 (continued 1)

Proof (continued). Now for given set Y and $S \subseteq Y$ there are $\binom{|Y| - |S|}{|X| - |S|}$ sets X with |X| = k and $S \subseteq X \subseteq Y$ (since we create such a set X by choosing |X| - |S| elements of set $Y \setminus S$ and then X consists of these elements along with the elements of set S). So for given finite sets S and Y where $S \subseteq Y$, |S| = s, and $n = |Y| - |S| \neq \emptyset$ (so that $S \neq Y$) we have

$$0 = \sum_{s \le k \le n+s} \binom{n}{k-s} (-1)^{k-2}$$

 $= \sum_{s \le |X| \le n+s} (-1)^{|X|-s} \text{ where } X \text{ ranges over the } \begin{pmatrix} |Y|-s \\ |X|-s \end{pmatrix} \text{ sets}$

that are supersets of S and subsets of Y

$$= \sum_{|S| \le |X| \le |Y|} (-1)^{|X| - |S|} \text{ where } X \text{ is as above.}$$
(*)

Theorem 2.25 (continued 1)

Proof (continued). Now for given set Y and $S \subseteq Y$ there are $\binom{|Y| - |S|}{|X| - |S|}$ sets X with |X| = k and $S \subseteq X \subseteq Y$ (since we create such a set X by choosing |X| - |S| elements of set $Y \setminus S$ and then X consists of these elements along with the elements of set S). So for given finite sets S and Y where $S \subseteq Y$, |S| = s, and $n = |Y| - |S| \neq \emptyset$ (so that $S \neq Y$) we have

$$0 = \sum_{s \le k \le n+s} {n \choose k-s} (-1)^{k-2}$$

=
$$\sum_{s \le |X| \le n+s} (-1)^{|X|-s} \text{ where } X \text{ ranges over the } {|Y|-s \choose |X|-s} \text{ sets}$$

that are supersets of S and subsets of Y
=
$$\sum_{x \le |X| \le n+s} (-1)^{|X|-|S|} \text{ where } X \text{ is as above.} \qquad (*)$$

|S| < |X| < |Y|

Theorem 2.25 (continued 2)

Proof (continued). Now (*) holds for given finite set Y and any $S \subsetneq Y$. With set Y fixed, S ranging over all subsets of Y (except S = Y), and X ranging over all sets that as supersets of given set S and subsets of Y, we have from (*) that

$$0 = \sum_{S \subseteq \neq Y} \left(\sum_{S \subseteq X \subseteq Y} (-1)^{|X| - |S|} \right)$$

=
$$\sum_{S \subseteq X \subseteq Y, S \neq Y} (-1)^{|X| - |S|} \text{ where set } Y \text{ is fixed and sets } S$$

and X range over all sets satisfying $S \subseteq X \subseteq Y$ and $X \neq Y$
of course if $S = Y$ then $S \subseteq X \subseteq Y$ implies $S = X = Y$ and
$$\sum_{G X \subseteq Y} (-1)^{|X| - |S|} = 1. \text{ So for any finite set } Y, \text{ we have}$$

$$\sum_{X \subseteq X \subseteq Y} (-1)^{|X| - |S|} = \begin{cases} 0 & \text{if } S \neq Y \\ 1 & \text{if } S = Y. \end{cases}$$

Theorem 2.25 (continued 2)

Proof (continued). Now (*) holds for given finite set Y and any $S \subsetneq Y$. With set Y fixed, S ranging over all subsets of Y (except S = Y), and X ranging over all sets that as supersets of given set S and subsets of Y, we have from (*) that

$$0 = \sum_{S \subseteq \neq Y} \left(\sum_{S \subseteq X \subseteq Y} (-1)^{|X| - |S|} \right)$$

=
$$\sum_{S \subseteq X \subseteq Y, S \neq Y} (-1)^{|X| - |S|} \text{ where set } Y \text{ is fixed and sets } S$$

and X range over all sets satisfying $S \subseteq X \subseteq Y$ and $X \neq Y$.
Of course if $S = Y$ then $S \subseteq X \subseteq Y$ implies $S = X = Y$ and
$$\sum_{S \subseteq X \subseteq Y} (-1)^{|X| - |S|} = 1. \text{ So for any finite set } Y, \text{ we have}$$

$$\sum_{X \subseteq X \subseteq Y} (-1)^{|X| - |S|} = \begin{cases} 0 & \text{if } S \neq Y \\ 1 & \text{if } S = Y. \end{cases}$$

Theorem 2.25 (continued 3)

Proof (continued). Therefore

$$f(S) = \sum_{S \subseteq Y \subseteq T} f(Y) \left(\sum_{S \subseteq X \subseteq Y} (-1)^{|X| - |S|} \right) \text{ since the quantity}$$

in parentheses is 0 except when $Y = S$
$$= \sum_{S \subseteq Y \subseteq T} \sum_{S \subseteq X \subseteq Y} f(Y)(-1)^{|X| - |S|} = \sum_{S \subseteq X \subseteq Y \subseteq T} f(Y)(-1)^{|X| - |S|}$$
$$= \sum_{S \subseteq X \subseteq T} \sum_{X \subseteq Y \subseteq T} (-1)^{|X| - |S|} f(Y)$$
$$= \sum_{S \subseteq X \subseteq T} (-1)^{|X| - |S|} \left(\sum_{X \subseteq Y \subseteq T} f(Y) \right)$$
$$= \sum_{S \subseteq X \subseteq T} (-1)^{|X| - |S|} g(X) \text{ by the definition of } g,$$

as claimed.

Graph Theory

Lemma 2.26. NASH-WILLIAMS' LEMMA. Let G be a graph, F a spanning subgraph of G, and H an edge reconstruction of G that is not isomorphic to G. Then

$$|G \rightarrow G|_F - |G \rightarrow H|_F = (-1)^{e(G)-e(F)} \operatorname{aut}(G).$$

Proof. Since F is a subgraph of G, by (2.6) and (2.7) we have

 $\sum_{F \subseteq X \subseteq G} |G \to H|_X = \operatorname{aut}(G) \binom{H}{F}.$ Now define $f(X) = |G \to H|_X$ so that

f maps $2^{E(G)}$ (the power set of the edge set of G) into \mathbb{R} .

Lemma 2.26. NASH-WILLIAMS' LEMMA.

Let G be a graph, F a spanning subgraph of G, and H an edge reconstruction of G that is not isomorphic to G. Then

$$|G \rightarrow G|_F - |G \rightarrow H|_F = (-1)^{e(G)-e(F)} \operatorname{aut}(G).$$

Proof. Since *F* is a subgraph of *G*, by (2.6) and (2.7) we have $\sum_{F \subseteq X \subseteq G} |G \to H|_X = \operatorname{aut}(G) \binom{H}{F}.$ Now define $f(X) = |G \to H|_X$ so that *f* maps $2^{E(G)}$ (the power set of the edge set of *G*) into \mathbb{R} . Define

$$g(F) = \sum_{F \subseteq X \subseteq G} f(X) = \sum_{F \subseteq X \subseteq G} |G \to H|_X$$
$$= |F \to H| \text{ by (2.6)}.$$

Lemma 2.26. NASH-WILLIAMS' LEMMA.

Let G be a graph, F a spanning subgraph of G, and H an edge reconstruction of G that is not isomorphic to G. Then

$$|G \rightarrow G|_F - |G \rightarrow H|_F = (-1)^{e(G)-e(F)} \operatorname{aut}(G).$$

Proof. Since *F* is a subgraph of *G*, by (2.6) and (2.7) we have $\sum_{F \subseteq X \subseteq G} |G \to H|_X = \operatorname{aut}(G) \binom{H}{F}.$ Now define $f(X) = |G \to H|_X$ so that *f* maps $2^{E(G)}$ (the power set of the edge set of *G*) into \mathbb{R} . Define

$$g(F) = \sum_{F \subseteq X \subseteq G} f(X) = \sum_{F \subseteq X \subseteq G} |G \to H|_X$$
$$= |F \to H| \text{ by (2.6)}.$$

Lemma 2.26 (continued 1)

Proof (continued). Then by the Möbius Inversion Formula (Theorem 2.25)

$$f(F) = \sum_{F \subseteq X \subseteq G} (-1)^{|X| - |F|} g(X) = \sum_{F \subseteq X \subseteq G} (-1)^{e(X) - e(F)} |X \to H|$$
$$= \sum_{F \subseteq X \subseteq G} (-1)^{e(X) - e(F)} \operatorname{aut}(X) \binom{H}{X} \text{ by (2.7).}$$

By the definition of f, $f(F) = |G \rightarrow H|_F$, so we have

$$|G \to H|_F = \sum_{F \subseteq X \subseteq G} (-1)^{e(X)-e(F)} \operatorname{aut}(X) \binom{H}{X}.$$

Therefore,

$$|G \to G|_F - |G \to H|_F = \sum_{F \subseteq X \subseteq G} (-1)^{e(X) - e(F)} \operatorname{aut}(X) \left(\begin{pmatrix} G \\ X \end{pmatrix} - \begin{pmatrix} H \\ X \end{pmatrix} \right).$$

Lemma 2.26 (continued 1)

Proof (continued). Then by the Möbius Inversion Formula (Theorem 2.25)

$$f(F) = \sum_{F \subseteq X \subseteq G} (-1)^{|X| - |F|} g(X) = \sum_{F \subseteq X \subseteq G} (-1)^{e(X) - e(F)} |X \to H|$$
$$= \sum_{F \subseteq X \subseteq G} (-1)^{e(X) - e(F)} \operatorname{aut}(X) \binom{H}{X} \text{ by (2.7).}$$

By the definition of f, $f(F) = |G \rightarrow H|_F$, so we have

$$|G \to H|_F = \sum_{F \subseteq X \subseteq G} (-1)^{e(X)-e(F)} \operatorname{aut}(X) \binom{H}{X}.$$

Therefore,

$$|G \to G|_F - |G \to H|_F = \sum_{F \subseteq X \subseteq G} (-1)^{e(X) - e(F)} \operatorname{aut}(X) \left(\begin{pmatrix} G \\ X \end{pmatrix} - \begin{pmatrix} H \\ X \end{pmatrix} \right).$$

Lemma 2.26 (continued 2)

Proof (continued). Now *H* is an edge reconstruction of *G* by hypothesis so for each $X \subsetneq G$ (where e(X) < e(G)) we have by Kelly's Lemma Edge Version (Lemma 2.24) that $\begin{pmatrix} G \\ X \end{pmatrix} = \begin{pmatrix} H \\ X \end{pmatrix}$. So we then have

$$|G \to G|_F - |G \to H|_F = (-1)^{e(G) - e(F)} \operatorname{aut} \left(\begin{pmatrix} G \\ G \end{pmatrix} - \begin{pmatrix} H \\ G \end{pmatrix} \right)$$

$$= (-1)^{e(G)-e(F)}$$
aut (G)

where the last equality holds because $\binom{G}{G} = 1$, and $\binom{H}{G} = 0$ since e(H) = e(G) but $h \not\cong G$ by hypothesis. So the equation holds, as claimed.

Theorem 2.27. A graph G is edge reconstructible if there exists a spanning subgraph F of G such that either of the following two conditions holds:

(i) |G → H|_F takes the same value for all edge reconstructions H of G.
(ii) |F → G| < 2^{e(G)-e(F)-1}aut(G).

Proof. Let *H* be an edge reconstruction of *G*. We show that each of the two given conditions contradict Nash-Williams' Lemma so that we can conclude that $H \cong G$ and hence *G* is reconstructible.

Theorem 2.27. A graph G is edge reconstructible if there exists a spanning subgraph F of G such that either of the following two conditions holds:

(i) |G → H|_F takes the same value for all edge reconstructions H of G.
(ii) |F → G| < 2^{e(G)-e(F)-1}aut(G).

Proof. Let *H* be an edge reconstruction of *G*. We show that each of the two given conditions contradict Nash-Williams' Lemma so that we can conclude that $H \cong G$ and hence *G* is reconstructible.

Suppose condition (i) holds and ASSUME $H \not\cong G$. Then the Nash Williams' Lemma, which gives

$$|G \rightarrow G|_F - |G \rightarrow H|_F - (-1)^{e(G) - e(F)}$$
aut (G) ,

implies $|G \to G|_F - |G - H|_F = 0$ (since G is a reconstruction of G), but $(-1)^{e(G)-e(F)} \operatorname{aut}(G) \neq 0$, a CONTRADICTION.

Theorem 2.27. A graph G is edge reconstructible if there exists a spanning subgraph F of G such that either of the following two conditions holds:

(i) |G → H|_F takes the same value for all edge reconstructions H of G.
(ii) |F → G| < 2^{e(G)-e(F)-1}aut(G).

Proof. Let *H* be an edge reconstruction of *G*. We show that each of the two given conditions contradict Nash-Williams' Lemma so that we can conclude that $H \cong G$ and hence *G* is reconstructible.

Suppose condition (i) holds and ASSUME $H \not\cong G$. Then the Nash Williams' Lemma, which gives

$$|G
ightarrow G|_F - |G
ightarrow H|_F - (-1)^{\mathsf{e}(G) - \mathsf{e}(F)} \mathsf{aut}(G),$$

implies $|G \to G|_F - |G - H|_F = 0$ (since G is a reconstruction of G), but $(-1)^{e(G)-e(F)} \operatorname{aut}(G) \neq 0$, a CONTRADICTION.

Theorem 2.27 (continued 1)

Proof (continued). So the assumption that $H \not\cong G$ is false and we must have $H \cong G$. That is, G is reconstructible, as claimed.

Suppose condition (ii) holds and ASSUME $H \not\cong G$. Then

$$\sum_{F \subseteq X \subseteq G} |G \to G|_X = |F \to G| \text{ by (2.6)}$$

$$< 2^{e(G)-e(F)-1}$$
aut (G) by condition (ii). (*)

Theorem 2.27 (continued 1)

Proof (continued). So the assumption that $H \not\cong G$ is false and we must have $H \cong G$. That is, G is reconstructible, as claimed.

Suppose condition (ii) holds and ASSUME $H \not\cong G$. Then

$$\sum_{F \subseteq X \subseteq G} |G \to G|_X = |F \to G| \text{ by (2.6)}$$

$$< 2^{e(G)-e(F)-1} \operatorname{aut}(G) \text{ by condition (ii). (*)}$$

We now count the number of graphs X which satisfy $F \subseteq X \subseteq G$. Such a graph X must contain all edges of F and none, some, or all of the edges in $E(G) \setminus E(F)$. Since $|E(G) \setminus E(F)| = e(G) - e(F)$ then there are $2^{e(G)-e(F)}$ possible graphs X. Index these $2^{e(G)-e(F)}$ graphs as X_i for $i = 1, 2, \ldots, 2^{e(G)-e(F)}$. Defining $x_i = |G \to G|_{X_i}$, (*) implies

$$\sum_{i=1}^{2^{e(G)-e(F)}} |G \to G|_{X_i} = \sum_{i=1}^{2^{e(G)-e(f)}} x_i < e^{e(G)-e(F)-1} \operatorname{aut}(G). \quad (**)$$

Theorem 2.27 (continued 1)

Proof (continued). So the assumption that $H \not\cong G$ is false and we must have $H \cong G$. That is, G is reconstructible, as claimed.

Suppose condition (ii) holds and ASSUME $H \not\cong G$. Then

$$\sum_{F \subseteq X \subseteq G} |G \to G|_X = |F \to G| \text{ by } (2.6)$$

$$< 2^{e(G)-e(F)-1} \operatorname{aut}(G) \text{ by condition (ii). (*)}$$

We now count the number of graphs X which satisfy $F \subseteq X \subseteq G$. Such a graph X must contain all edges of F and none, some, or all of the edges in $E(G) \setminus E(F)$. Since $|E(G) \setminus E(F)| = e(G) - e(F)$ then there are $2^{e(G)-e(F)}$ possible graphs X. Index these $2^{e(G)-e(F)}$ graphs as X_i for $i = 1, 2, \ldots, 2^{e(G)-e(F)}$. Defining $x_i = |G \to G|_{X_i}$, (*) implies $\sum_{i=1}^{2^{e(G)-e(F)}} |G \to G|_{X_i} = \sum_{i=1}^{2^{e(G)-e(F)}} x_i < e^{e(G)-e(F)-1} \operatorname{aut}(G). \quad (**)$

Theorem 2.27 (continued 2)

Proof (continued). ASSUME half or more of the x_i satisfy $x_i \ge \operatorname{aut}(G)$. Then

$$\sum_{i=1}^{2^{e(G)-e(F)}} x_i \geq 2^{e(G)-e(F)-1} \operatorname{aut}(G),$$

CONTRADICTING (**). So we must have less than half of the x_i satisfying $x_i \ge \operatorname{aut}(G)$ and hence we must have more than half of the x_i satisfying $x_i < \operatorname{aut}(G)$. Now e(G) - e(F) (when $X_i = F$) where at least half of the values are even (exactly half when e(G) - e(F) is odd and more than half when e(G) - e(F) is even). Since more than half of the x_i satisfy $x_i < \operatorname{aut}(G)$, there must be some index i^* where $x_{i^*} = |G \to G|_{X_{i^*}} < \operatorname{aut}(G)$ and $e(G) - e(X_{i^*})$ is even. Denote this X_{i^*} as X.

Theorem 2.27 (continued 2)

Proof (continued). ASSUME half or more of the x_i satisfy $x_i \ge \operatorname{aut}(G)$. Then

$$\sum_{i=1}^{2^{e(G)-e(F)}} x_i \ge 2^{e(G)-e(F)-1} \operatorname{aut}(G),$$

CONTRADICTING (**). So we must have less than half of the x_i satisfying $x_i \ge \operatorname{aut}(G)$ and hence we must have more than half of the x_i satisfying $x_i < \operatorname{aut}(G)$. Now e(G) - e(F) (when $X_i = F$) where at least half of the values are even (exactly half when e(G) - e(F) is odd and more than half when e(G) - e(F) is even). Since more than half of the x_i satisfy $x_i < \operatorname{aut}(G)$, there must be some index i^* where $x_{i^*} = |G \to G|_{X_{i^*}} < \operatorname{aut}(G)$ and $e(G) - e(X_{i^*})$ is even. Denote this X_{i^*} as X.

Theorem 2.27 (continued 3)

Proof (continued). Then with F = X in Nash-Williams' Lemma (Lemma 2.26; we have assumed $H \not\cong G$) we have

$$\begin{aligned} |G \to G|_X - |G \to H|_X &= (-1)^{e(G) - e(F)} \operatorname{aut}(G) \\ &= \operatorname{aut}(G) \text{ since } e(G) - e(X) \text{ is even} \\ &< \operatorname{aut}(G) - |G \to H|_X \text{ since} \\ &|G \to G|_X < \operatorname{aut}(G). \end{aligned}$$

But this implies that $0 < -|G \rightarrow H|_X$, a CONTRADICTION since $|G \rightarrow H|_X \ge 0$. So the assumption that $H \ncong G$ is false and we must have $H \cong G$. That is, G is reconstructible, as claimed.

Theorem 2.27 (continued 3)

Proof (continued). Then with F = X in Nash-Williams' Lemma (Lemma 2.26; we have assumed $H \not\cong G$) we have

$$\begin{aligned} |G \to G|_X - |G \to H|_X &= (-1)^{e(G) - e(F)} \operatorname{aut}(G) \\ &= \operatorname{aut}(G) \text{ since } e(G) - e(X) \text{ is even} \\ &< \operatorname{aut}(G) - |G \to H|_X \text{ since} \\ &|G \to G|_X < \operatorname{aut}(G). \end{aligned}$$

But this implies that $0 < -|G \rightarrow H|_X$, a CONTRADICTION since $|G \rightarrow H|_X \ge 0$. So the assumption that $H \ncong G$ is false and we must have $H \cong G$. That is, G is reconstructible, as claimed.