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Lemma 2.20. Kelly’s Lemma

Lemma 2.20

Lemma 2.20. Kelly’s Lemma. For any two graphs F and G such that

v(F ) < v(G ), the parameter

(
G

F

)
is a reconstructible parameter.

Proof. A given copy of F in G appears in the vertex-deleted subgraph
G − v if and only if v is not a vertex of F . Now there are v(G )
vertex-deleted subgraphs of G of the born G − v (one for each v ∈ V (G ))
and v(F ) of these do not contain F (the G − v where v ∈ V (F )). Now

the number of copies of F in G − v is

(
G − v

F

)
.

Then
∑

v∈V (G)

(
G − v

F

)
counts all copies of F in G , but includes each copy v(G )− v(F ) times. So

we have

(
G

F

)
=

1

v(G )− v(F )

∑
v∈V (G)

(
G − v

F

)
. Since

(
G

F

)
is a function

of the parameter

(
G − v

F

)
(and properties of G and F ) then

(
G

F

)
is a

reconstructible parameter.
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Corollary 2.21

Corollary 2.21

Corollary 2.21. For any two graphs F and G , the number of subgraphs of
G that are isomorphic to F and includes a given vertex v is a
reconstructible parameter.

Proof. The number of subgraphs of G that are isomorphic to F is

(
G

F

)
.

The number of these that exclude vertex v is

(
G − v

F

)
. So the number of

subgraphs of G that are isomorphic to F and include vertex v is(
G

F

)
−

(
G − v

F

)
. Since

(
G

F

)
is a reconstructible parameter by Kelly’s

Lemma (Lemma 2.20) and

(
G − v

F

)
is a parameter of G − v , then(

G

F

)
−

(
G − v

F

)
is a reconstructible parameter, as claimed.
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Corollary 2.22

Corollary 2.22

Corollary 2.22. The size and the degree sequence are reconstructible
parameters.

Proof. The size of graph G is m = e(G ) =

(
G

K2

)
and so is a

constructible parameter by Kelly’s Lemma (Lemma 2.20). With F = K2,
Corollary 2.21 implies that the number of edges in G that include a vertex
v is a constructible parameter. But this parameter is just the degree of v .
So the degree of each vertex of G (and hence the degree sequence of G ) is
a constructible parameter, as claimed.
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Theorem 2.25. Möbius Inversion Formula

Theorem 2.25

Theorem 2.25. The Möbius Inversion Formula.
Let f : 2T → R (here, 2T represents the power set of T , 2T = P(T )) be
a real-valued function defined on the subsets of a finite set T . Define the
function g : 2T → R by g(S) =

∑
S⊆X⊆T f (X ). Then for all S ⊆ T ,

f (S) =
∑

S⊆X⊆T

(−1)|X |−|S |g(X ).

Proof. First, by the Binomial Theorem, for n ∈ N we have

0 = (1 + (−1))n =
n∑

k=0

(
n

k

)
(1)n−k(−1)k =

n∑
k=0

(
n

k

)
(−1)k

=
∑

0≤k≤n

(
n

k

)
(−1)k =

∑
s≤k≤n+s

(
n

k − s

)
(−1)k−s

where s ∈ N ∪ {0} is any constant.
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Theorem 2.25. Möbius Inversion Formula

Theorem 2.25 (continued 1)

Proof (continued). Now for given set Y and S ⊆ Y there are(
|Y | − |S |
|X | − |S |

)
sets X with |X | = k and S ⊆ X ⊆ Y (since we create such a

set X by choosing |X | − |S | elements of set Y \ S and then X consists of
these elements along with the elements of set S). So for given finite sets S
and Y where S ⊆ Y , |S | = s, and n = |Y | − |S | 6= ∅ (so that S 6= Y ) we
have

0 =
∑

s≤k≤n+s

(
n

k − s

)
(−1)k−2

=
∑

s≤|X |≤n+s

(−1)|X |−s where X ranges over the

(
|Y | − s

|X | − s

)
sets

that are supersets of S and subsets of Y

=
∑

|S |≤|X |≤|Y |

(−1)|X |−|S | where X is as above. (∗)
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Theorem 2.25. Möbius Inversion Formula

Theorem 2.25 (continued 2)

Proof (continued). Now (∗) holds for given finite set Y and any S ( Y .
With set Y fixed, S ranging over all subsets of Y (except S = Y ), and X
ranging over all sets that ae supersets of given set S and subsets of Y , we
have from (∗) that

0 =
∑

S⊂6=Y

 ∑
S⊆X⊆Y

(−1)|X |−|S |


=

∑
S⊆X⊆Y , S 6=Y

(−1)|X |−|S | where set Y is fixed and sets S

and X range over all sets satisfying S ⊆ X ⊆ Y and X 6= Y .

Of course if S = Y then S ⊆ X ⊆ Y implies S = X = Y and∑
S⊆X⊆Y

(−1)|X |−|S | = 1. So for any finite set Y , we have∑
X⊆X⊆Y

(−1)|X |−|S | =

{
0 if S 6= Y
1 if S = Y .
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Theorem 2.25. Möbius Inversion Formula

Theorem 2.25 (continued 3)

Proof (continued). Therefore

f (S) =
∑

S⊆Y⊆T

f (Y )

 ∑
S⊆X⊆Y

(−1)|X |−|S |

 since the quantity

in parentheses is 0 except when Y = S

=
∑

S⊆Y⊆T

∑
S⊆X⊆Y

f (Y )(−1)|X |−|S | =
∑

S⊆X⊆Y⊆T

f (Y )(−1)|X |−|S |

=
∑

S⊆X⊆T

∑
X⊆Y⊆T

(−1)|X |−|S |f (Y )

=
∑

S⊆X⊆T

(−1)|X |−|S |

 ∑
X⊆Y⊆T

f (Y )


=

∑
S⊆X⊆T

(−1)|X |−|S |g(X ) by the definition of g ,

as claimed.
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Lemma 2.26. Nash-Williams’ Lemma

Lemma 2.26

Lemma 2.26. Nash-Williams’ Lemma.
Let G be a graph, F a spanning subgraph of G , and H an edge
reconstruction of G that is not isomorphic to G . Then

|G → G |F − |G → H|F = (−1)e(G)−e(F )aut(G ).

Proof. Since F is a subgraph of G , by (2.6) and (2.7) we have∑
F⊆X⊆G

|G → H|X = aut(G )

(
H

F

)
. Now define f (X ) = |G → H|X so that

f maps 2E(G) (the power set of the edge set of G ) into R.

Define

g(F ) =
∑

F⊆X⊆G

f (X ) =
∑

F⊆X⊆G

|G → H|X

= |F → H| by (2.6).
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Lemma 2.26. Nash-Williams’ Lemma

Lemma 2.26 (continued 1)

Proof (continued). Then by the Möbius Inversion Formula (Theorem
2.25)

f (F ) =
∑

F⊆X⊆G

(−1)|X |−|F |g(X ) =
∑

F⊆X⊆G

(−1)e(X )−e(F )|X → H|

=
∑

F⊆X⊆G

(−1)e(X )−e(F )aut(X )

(
H

X

)
by (2.7).

By the definition of f , f (F ) = |G → H|F , so we have

|G → H|F =
∑

F⊆X⊆G

(−1)e(X )−e(F )aut(X )

(
H

X

)
.

Therefore,

|G → G |F − |G → H|F =
∑

F⊆X⊆G

(−1)e(X )−e(F )aut(X )

((
G

X

)
−

(
H

X

))
.
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Lemma 2.26 (continued 1)

Proof (continued). Then by the Möbius Inversion Formula (Theorem
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Lemma 2.26. Nash-Williams’ Lemma

Lemma 2.26 (continued 2)

Proof (continued). Now H is an edge reconstruction of G by hypothesis
so for each X ( G (where e(X ) < e(G )) we have by Kelly’s Lemma Edge

Version (Lemma 2.24) that

(
G

X

)
=

(
H

X

)
. So we then have

|G → G |F − |G → H|F = (−1)e(G)−e(F )aut

((
G

G

)
−

(
H

G

))
= (−1)e(G)−e(F )aut(G )

where the last equality holds because
(G
G

)
= 1, and

(H
G

)
= 0 since

e(H) = e(G ) but h 6∼= G by hypothesis. So the equation holds, as
claimed.

() Graph Theory March 29, 2020 12 / 16



Theorem 2.27

Theorem 2.27

Theorem 2.27. A graph G is edge reconstructible if there exists a
spanning subgraph F of G such that either of the following two conditions
holds:

(i) |G → H|F takes the same value for all edge reconstructions
H of G .

(ii) |F → G | < 2e(G)−e(F )−1aut(G ).

Proof. Let H be an edge reconstruction of G . We show that each of the
two given conditions contradict Nash-Williams’ Lemma so that we can
conclude that H ∼= G and hence G is reconstructible.

Suppose condition (i) holds and ASSUME H 6∼= G . Then the Nash
Williams’ Lemma, which gives

|G → G |F − |G → H|F − (−1)e(G)−e(F )aut(G ),

implies |G → G |F − |G − H|F = 0 (since G is a reconstruction of G ), but
(−1)e(G)−e(F )aut(G ) 6= 0, a CONTRADICTION.
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Theorem 2.27

Theorem 2.27 (continued 1)

Proof (continued). So the assumption that H 6∼= G is false and we must
have H ∼= G . That is, G is reconstructible, as claimed.

Suppose condition (ii) holds and ASSUME H 6∼= G . Then∑
F⊆X⊆G

|G → G |X = |F → G | by (2.6)

< 2e(G)−e(F )−1aut(G ) by condition (ii). (∗)

We now count the number of graphs X which satisfy F ⊆ X ⊆ G . Such a
graph X must contain all edges of F and none, some, or all of the edges in
E (G ) \ E (F ). Since |E (G ) \ E (F )| = e(G )− e(F ) then there are
2e(G)−e(F ) possible graphs X . Index these 2e(G)−e(F ) graphs as Xi for
i = 1, 2, . . . , 2e(G)−e(F ). Defining xi = |G → G |Xi

, (∗) implies

2e(G)−e(F )∑
i=1

|G → G |Xi
=

2e(G)−e(f )∑
i=1

xi < ee(G)−e(F )−1aut(G ). (∗∗)
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xi < ee(G)−e(F )−1aut(G ). (∗∗)

() Graph Theory March 29, 2020 14 / 16



Theorem 2.27

Theorem 2.27 (continued 2)

Proof (continued). ASSUME half or more of the xi satisfy xi ≥ aut(G ).
Then

2e(G)−e(F )∑
i=1

xi ≥ 2e(G)−e(F )−1aut(G ),

CONTRADICTING (∗∗). So we must have less than half of the xi

satisfying xi ≥ aut(G ) and hence we must have more than half of the xi

satisfying xi < aut(G ). Now e(G )− e(F ) (when Xi = F ) where at least
half of the values are even (exactly half when e(G )− e(F ) is odd and
more than half when e(G )− e(F ) is even). Since more than half of the xi

satisfy xi < aut(G ), there must be some index i∗ where
xi∗ = |G → G |Xi∗ < aut(G ) and e(G )− e(Xi∗) is even. Denote this Xi∗ as
X .
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Theorem 2.27

Theorem 2.27 (continued 3)

Proof (continued). Then with F = X in Nash-Williams’ Lemma (Lemma
2.26; we have assumed H 6∼= G ) we have

|G → G |X − |G → H|X = (−1)e(G)−e(F )aut(G )

= aut(G ) since e(G )− e(X ) is even

< aut(G )− |G → H|X since

|G → G |X < aut(G ).

But this implies that 0 < −|G → H|X , a CONTRADICTION since
|G → H|X ≥ 0. So the assumption that H 6∼= G is false and we must have
H ∼= G . That is, G is reconstructible, as claimed.
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