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Lemma 2.20

Lemma 2.20. KELLY’S LEMMA. For any two graphs F and G such that

G
v(F) < v(G), the parameter <F) is a reconstructible parameter.
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Lemma 2.20

Lemma 2.20. KELLY’S LEMMA. For any two graphs F and G such that

G
v(F) < v(G), the parameter <F) is a reconstructible parameter.

Proof. A given copy of F in G appears in the vertex-deleted subgraph

G — v if and only if v is not a vertex of F. Now there are v(G)
vertex-deleted subgraphs of G of the born G — v (one for each v € V(G))
and v(F) of these do not contain F (the G — v where v € V(F)). Now
G—v

the number of copies of Fin G — v is < r
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Lemma 2.20

Lemma 2.20. KELLY’S LEMMA. For any two graphs F and G such that

G
v(F) < v(G), the parameter <F) is a reconstructible parameter.

Proof. A given copy of F in G appears in the vertex-deleted subgraph

G — v if and only if v is not a vertex of F. Now there are v(G)
vertex-deleted subgraphs of G of the born G — v (one for each v € V(G))
and v(F) of these do not contain F (the G — v where v € V(F)). Now

. . . (G—v G—-v
the number of copies of Fin G — v is < r ) Then Z < F )
veV(G)

counts all copies of F in G, but includes each copy v(G) — v(F) times. So

we have (g) = ﬁ 3 (GF V>. Since <g) is a function
(G) —v(F)

veV(G)
v _ G\ .
> (and properties of G and F) then <F> is a

reconstructible parameter. O
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Corollary 2.21

Corollary 2.21. For any two graphs F and G, the number of subgraphs of

G that are isomorphic to F and includes a given vertex v is a
reconstructible parameter.
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Corollary 2.21

Corollary 2.21. For any two graphs F and G, the number of subgraphs of
G that are isomorphic to F and includes a given vertex v is a
reconstructible parameter.

Proof. The number of subgraphs of G that are isomorphic to F is (g)

. v
The number of these that exclude vertex v is s . So the number of

subgraphs of G that are isomorphic to F and include vertex v is

G G-—v ) G\ . ) ,
(F) — < s ) Since (F) is a reconstructible parameter by Kelly's

Lemma (Lemma 2.20) and ; ") is a parameter of G — v, then
G G —
<F> — ( s V> is a reconstructible parameter, as claimed. O
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Corollary 2.22

Corollary 2.22. The size and the degree sequence are reconstructible
parameters.
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Corollary 2.22

Corollary 2.22. The size and the degree sequence are reconstructible
parameters.

Proof. The size of graph G is m = e(G) = <§> and so is a
2

constructible parameter by Kelly’'s Lemma (Lemma 2.20). With F = K5,

Corollary 2.21 implies that the number of edges in G that include a vertex
v is a constructible parameter. But this parameter is just the degree of v.
So the degree of each vertex of G (and hence the degree sequence of G) is

a constructible parameter, as claimed. O
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Theorem 2.25

Theorem 2.25. THE MOBIUS INVERSION FORMULA.

Let f: 27 — R (here, 27 represents the power set of T, 27 = P(T)) be
a real-valued function defined on the subsets of a finite set T. Define the
function g : 27 — R by g(S) =Y scxcr f(X). Thenforall SC T,

f(S)= > (DX Plg(x).

SCXCT
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Theorem 2.25

Theorem 2.25. THE MOBIUS INVERSION FORMULA.

Let f: 27 — R (here, 27 represents the power set of T, 27 = P(T)) be
a real-valued function defined on the subsets of a finite set T. Define the

function g : 27 — R by g(S) = >.scxct f(X). Thenforall SC T,

f(S)= > (DX Plg(x).

SCXCT

Proof. First, by the Binomial Theorem, for n € N we have

o=+ oy =3 (D=3 (1)

k=0 k=0
n n
= fl k — 71 k—s
> (Jev= X (")
0<k<n s<k<n+s
where s € NU {0} is any constant.
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Theorem 2.25 (continued 1)

Proof (continued). Now for given set Y and S C Y there are

Y| —|S
<‘|X|| B “SD sets X with |[X| =k and S C X C Y (since we create such a

set X by choosing |X| —|S| elements of set Y \ S and then X consists of
these elements along with the elements of set S).
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Theorem 2.25 (continued 1)

Proof (continued). Now for given set Y and S C Y there are

[ is)

sets X with |[X| =k and S C X C Y (since we create such a

set X by choosing |X| —|S| elements of set Y \ S and then X consists of
these elements along with the elements of set S). So for given finite sets S
and Y where SC Y, |S|=s,and n=|Y|—|S| # @ (so that S # Y) we

have

0

Z (kis>(_1)k—2

s<k<n+s

Z (—=1)XI=5 where X ranges over the GI; a z> sets
s<|X|<n+s
that are supersets of S and subsets of Y

Z (—1)XI=IS] where X is as above. (%)
ISI<IX|<[Y]
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Theorem 2.25 (continued 2)

Proof (continued). Now (x) holds for given finite set Y and any S C Y.
With set Y fixed, S ranging over all subsets of Y (except S = Y), and X
ranging over all sets that ae supersets of given set S and subsets of Y, we
have from (x) that

0= S [ 3 (oS

Sc£Y \Sscxcy

= Z (—1)XI=I51 where set Y is fixed and sets S
SCXCY,S#Y
and X range over all sets satisfying SC X C Y and X # Y.
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Theorem 2.25 (continued 2)

Proof (continued). Now (x) holds for given finite set Y and any S C Y.
With set Y fixed, S ranging over all subsets of Y (except S = Y), and X
ranging over all sets that ae supersets of given set S and subsets of Y, we
have from (x) that

0= S [ 3 (oS

Sc£Y \Sscxcy

= Z (—1)XI=I51 where set Y is fixed and sets S
SCXCY,S#Y
and X range over all sets satisfying SC X C Y and X # Y.

Of course if S =Y then S C X C Y implies S =X =Y and
Z (—=1)XI=I5I = 1. So for any finite set Y, we have

SCXCY Z (_1)|X|_|5‘ _ 0 ifS#Y
Sy 1 fS=Y.
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Theorem 2.25 (continued 3)

Proof (continued). Therefore

f(s) = Z f(Y) Z (—1)XI=IS1] since the quantity

SCycT scxcy
in parentheses is 0 except when Y =5

- Z Z F(Y |X| S| Z f(y)(_l)IXHSl

SCYCT SCXCY SCXCYCT

= Z Z 1)XI=ISI£(y)
SCXCT XCYCT

= Z (—1)XI=1si Z f(Y)
SCXCT XCYCT

= Z (—1)XI=1Slg(X) by the definition of g,
SCXCT

as claimed. 0l
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Lemma 2.26. Nash-Williams' Lemma

Lemma 2.26

Lemma 2.26. NASH-WILLIAMS’ LEMMA.

Let G be a graph, F a spanning subgraph of G, and H an edge
reconstruction of G that is not isomorphic to G. Then

|G — G|p — |G — H|r = (—1)¢(®)=¢(Faut(G).
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Lemma 2.26. Nash-Williams' Lemma

Lemma 2.26

Lemma 2.26. NASH-WILLIAMS’ LEMMA.

Let G be a graph, F a spanning subgraph of G, and H an edge
reconstruction of G that is not isomorphic to G. Then

|G — G|p — |G — H|r = (—1)¢(®)=¢(Faut(G).

Proof. Since F is a subgraph of G, by (2.6) and (2.7) we have

H
Z |G — H|x = aut(G)<F). Now define f(X) = |G — H|x so that
FCXCG

f maps 2E(C) (the power set of the edge set of G) into R.
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Lemma 2.26. Nash-Williams' Lemma

Lemma 2.26

Lemma 2.26. NASH-WILLIAMS’ LEMMA.

Let G be a graph, F a spanning subgraph of G, and H an edge
reconstruction of G that is not isomorphic to G. Then

|G — G|p — |G — H|r = (—1)¢(®)=¢(Faut(G).

Proof. Since F is a subgraph of G, by (2.6) and (2.7) we have

H
Z |G — H|x = aut(G)<F). Now define f(X) = |G — H|x so that
FCXCG

f maps 2E(C) (the power set of the edge set of G) into R. Define

g(F) = > fX)= Y [6—Hx

FCXCG FCXCG
— |F — H| by (2.6).
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Lemma 2.26. Nash-Williams' Lemma

Lemma 2.26 (continued 1)

Proof (continued). Then by the Mobius Inversion Formula (Theorem
2.25)

f(F) = 3 ()X Flg)= 3 (-1 0-Ox — p

FCXCG FCXCG
= Y (—l)e(X)_e(F)aut(X)<;l> by (2.7).
FCXCG

By the definition of f, f(F) = |G — H|F, so we have

GoHr= Y (_1)e<X>—e<F>aut(X)()’j>.

FCXCG
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Lemma 2.26. Nash-Williams' Lemma

Lemma 2.26 (continued 1)

Proof (continued). Then by the Mobius Inversion Formula (Theorem
2.25)

f(F) = 3 ()X Flg)= 3 (-1 0-Ox — p

FCXCG FCXCG
= Y (—l)e(X)_e(F)aut(X)<;l> by (2.7).
FCXCG

By the definition of f, f(F) = |G — H|F, so we have

GoHr= Y (_1)e<X>—e<F>aut(X)()’j>.

FCXCG
Therefore,
G H
N _ _ _ _1)\e(X)—e(F) _
6= Glr—1G—Hr= 3 (-1) a0 ((3) - (%))
FCXCG
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Lemma 2.26. Nash-Williams' Lemma

Lemma 2.26 (continued 2)

Proof (continued). Now H is an edge reconstruction of G by hypothesis
so for each X C G (where e(X) < e(G)) we have by Kelly's Lemma Edge

H
Version (Lemma 2.24) that <)G<> = <X> So we then have

R (G )

= (—=1)°(©)=e(Faut(G)

where the last equality holds because (g) =1, and (g) = 0 since
e(H) = e(G) but h 2 G by hypothesis. So the equation holds, as
claimed. O
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Theorem 2.27

Theorem 2.27. A graph G is edge reconstructible if there exists a
spanning subgraph F of G such that either of the following two conditions
holds:
(i) |G — H|F takes the same value for all edge reconstructions
H of G.
(i) |F — G| < 2¢(6)=e(FA)~1aut(G).
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Theorem 2.27

Theorem 2.27. A graph G is edge reconstructible if there exists a
spanning subgraph F of G such that either of the following two conditions
holds:
(i) |G — H|F takes the same value for all edge reconstructions
H of G.
(i) |F — G| < 2¢(6)=e(FA)~1aut(G).

Proof. Let H be an edge reconstruction of G. We show that each of the
two given conditions contradict Nash-Williams’ Lemma so that we can
conclude that H = G and hence G is reconstructible.
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Theorem 2.27

Theorem 2.27. A graph G is edge reconstructible if there exists a
spanning subgraph F of G such that either of the following two conditions
holds:
(i) |G — H|F takes the same value for all edge reconstructions
H of G.
(i) |F — G| < 2¢(6)=e(FA)~1aut(G).

Proof. Let H be an edge reconstruction of G. We show that each of the
two given conditions contradict Nash-Williams’ Lemma so that we can
conclude that H = G and hence G is reconstructible.

Suppose condition (i) holds and ASSUME H 2 G. Then the Nash
Williams' Lemma, which gives
G = Glr — 16 — HlF — (~1)%©)Faut(G),
implies |G — G|r — |G — H|r = 0 (since G is a reconstruction of G), but
(—1)¢(©)=e(Maut(G) # 0, a CONTRADICTION.
Graph Theory March 29, 2020 13 / 16



Theorem 2.27 (continued 1)

Proof (continued). So the assumption that H 2 G is false and we must
have H = G. That is, G is reconstructible, as claimed.
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Theorem 2.27 (continued 1)

Proof (continued). So the assumption that H 2 G is false and we must
have H = G. That is, G is reconstructible, as claimed.

Suppose condition (ii) holds and ASSUME H 22 G. Then
> 16> Glx = |F— G|by(26)

FCXCG
< 2¢0)=e(F)~153,t(G) by condition (i)).  (*)
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Theorem 2.27 (continued 1)

Proof (continued). So the assumption that H 2 G is false and we must
have H = G. That is, G is reconstructible, as claimed.

Suppose condition (ii) holds and ASSUME H 22 G. Then
> 16> Glx = |F— G|by(26)
FCXCG
< 2¢(6)=e(F)=13,t(G) by condition (ii). ()

We now count the number of graphs X which satisfy F C X C G. Such a
graph X must contain all edges of F and none, some, or all of the edges in
E(G)\ E(F). Since |E(G) \ E(F)| = e(G) — e(F) then there are
2¢(6)=e(F) possible graphs X. Index these 2¢(6)=e(F) graphs as X; for
i=1,2,...,2¢6)=¢(F) Defining x; = |G — G|x,, () implies

2¢(G)—e(F) 2¢(G)—e(f)
Y 16-Glx= > xi<efO P Tau(G).  (xx)
i=1 i=1
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Theorem 2.27 (continued 2)

Proof (continued). ASSUME half or more of the x; satisfy x; > aut(G).

Then
2¢e(G)—e(F)

Z x; > 28(C)=e(F)=14,4(G),

CONTRADICTING (#x*). So we must have less than half of the x;
satisfying x; > aut(G) and hence we must have more than half of the x;
satisfying x; < aut(G).
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Theorem 2.27 (continued 2)

Proof (continued). ASSUME half or more of the x; satisfy x; > aut(G).

Then
2¢e(G)—e(F)

Z x; > 28(C)=e(F)=14,4(G),

CONTRADICTING (#x*). So we must have less than half of the x;
satisfying x; > aut(G) and hence we must have more than half of the x;
satisfying x; < aut(G). Now e(G) — e(F) (when X; = F) where at least
half of the values are even (exactly half when e(G) — e(F) is odd and
more than half when e(G) — e(F) is even). Since more than half of the x;
satisfy x; < aut(G), there must be some index i* where

xp= = |G — Glx. < aut(G) and e(G) — e(Xj+) is even. Denote this Xj- as
X.
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Theorem 2.27 (continued 3)

Proof (continued). Then with F = X in Nash-Williams' Lemma (Lemma
2.26; we have assumed H 2 G) we have

G — Glx —1G = Hlx = (-1)%9*Faut(G)
= aut(G) since e(G) — e(X) is even
< aut(G) — |G — H|x since
|G — Glx < aut(G).

But this implies that 0 < —|G — H|x, a CONTRADICTION since
|G — H|x > 0.
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Theorem 2.27 (continued 3)

Proof (continued). Then with F = X in Nash-Williams' Lemma (Lemma
2.26; we have assumed H 2 G) we have

G — Glx —1G = Hlx = (-1)%9*Faut(G)
= aut(G) since e(G) — e(X) is even
< aut(G) — |G — H|x since
|G — Glx < aut(G).

But this implies that 0 < —|G — H|x, a CONTRADICTION since
|G — H|x > 0. So the assumption that H % G is false and we must have
H = G. That is, G is reconstructible, as claimed. O
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