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Graph Theory

Lemma 3.1.A. Let J be the n x n matrix with all entries 1. Then the

Chapter 3. Connected Graphs eigenvalues of J are 0 (with algebraic multiplicity n — 1) and n (with
3.1. Walks and Connection—Proofs of Theorems algebraic multiplicity 1).
Proof. We show that the characteristic polynomial is (—1)"A\"~1(\ — n),
from which the result will follow. We establish this by mathematical
induction. For n =1, we have |[J — \l| =1 — X = (=1)1\%(\ — 1),
e establishing the base case. Notice that for n = 2,
USR. Murty
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- & establishing another case. Suppose the claim holds for n = k — 1 and
Springer
- consider the case n = k.
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Lemma 3.1.A (continued 1) Lemma 3.1.A (continued 2)

Proof (continued). Then expanding determinants along the first column, Proof (continued).

1 1-A 1 1 1 1—-) 1 1
1 1 1 1--- 1-=2\ 1 1 1 1—\
1—A 1 1 1 1 1 1
1 1—-A 1 1-X2 1 1-2A 1
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1 1 1—X :
1 1 1 1—)\




Lemma 3.1.A (continued 3) Lemma 3.1.A (continued 4)

Proof (continued).

1 1 1 1 1 Proof (continued). By the induction hypothesis, the first term in (x) is
1—X 1 1 1-—2\ 1 (1= XN)(=1)*"1(A\*=2(X\ — (k — 1)). Now each of the other k — 1 cofactors
1 1—X 1 1 1 involve determinants of matrices with one column of all 1's (in bold faced;
—(1) 1 1 1 1-—2\ 1 +oe let this be column /), to the left of which are all entries of 1 except for
: entries of 1 — \ just below the diagonal entries, and to the right of which
1 1 1 1 1o are all entries of 1 except for entries of 1 — X along the diagonal. First we
B use the first row of these matrices to eliminate the other entries of 1. We
1 11 .. 11 subtract row 1 from each of the rows below it producing a (k—1) x (k—1)
1—x 1 1 ... 11 matrix with first row all 1's, to the left of this column are all entries of 0
—1 1 1) 1 1 1 except for entries of —\ just below the diagonal entries, and to the right
+H(=1)"(1) _ () of which are all entries of 0 except for entries of —\ along the diagonal:
1 1 1 1-x 1
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Lemma 3.1.A (continued 5) Lemma 3.1.A (continued 6)
Proof (continued). Proof (continued). These new matrices have the same determinants as
1 1 1 1 1 1 ] the original (respective) matrices (see Theorem 4.2.A. Properties of the
1—X 1 1 1 1 1 Determinant from my online Linear Algebra [MATH 2010] notes on 4.2.
1 1-X 1 1 1 1 The Determinant of a Square Matrix). Expanding the determinants of the
1 1 1—X 1 1 1 ~ remaining new matrices along the column consisting of a 1 followed by 0's
: : (the ¢th column) gives
1 1 1 1 .- 1-Xx 1 A 0 --- 0
|1 1 1 | 1 11— | " 0 =X\ --- 0 ™ o kn
_ ; -1 1 =(-1 1)(—1) A=,
o G ] R L
-2 0 0 0 0 0 0 0 -2
0 -Xx 0 0 0 0
0 0 - 0 0 0 Therefore |[J — M|
C k—1
P S = (L= AP0 (k= 1))+ (D) (1) (-2
0 0 o0 0 0 —A =




Lemma 3.1.A

Lemma 3.1.A (continued 7)

Lemma 3.1.A. Let J be the n X n matrix with all entries 1. Then the
eigenvalues of J are 0 (with algebraic multiplicity n — 1) and n (with
algebraic multiplicity 1).

Proof (continued).
(1 =)D = k1)) + (k= 1)(=1)F1A\2
= (DI =N =k +1)+k—1)
= (1) NNk +1 =M+ Xk = A+ k—1)
= (DR INET2(2X2 £ AK) = (1) A T2(N2 = k) = (1) A TH N = k).

So the result holds for n = k and therefore by Mathematical Induction
holds for all n € N. O
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Theorem 3.1. THE FRIENDSHIP THEOREM

Theorem 3.1 (continued 1)

Proof (continued). Now f(v;) # f(v;) for i # j because of the
hypothesis that any two vertices (x and v; here) have exactly one common
neighbor. So f is a one-to-one (injective) mapping from N(x)\ {z} to
N(y)\{z}. Since [N(x) \{z}| = d(x) = d(y) = [N(y)\ {z}] (since x and
y are nonadjacent and d(x) > d(y) here) then f is actually onto
(surjective) and we have d(x) = d(y). Since x and y are arbitrary
nonadjacent vertices of G, then any two nonadjacent vertices of G have
the same degree. Equivalently, any two adjacent vertices in the
complement of G, G, have the same degree (since dz(v) =n— 1 — dg(v)
for all v € V). From this it follows that if G is connected then G (and
hence G) is regular. Since we assumed A < n—1 then

5(G) =n—1—A(G) >0 and so G has no vectors of degree 0; that is, G
has no singleton components. Now G cannot have two components each
on two or more vertices, for then G would have a 4-cycle in violation of
the hypothesis of any two vertices having exactly one common neighbor.
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Theorem 3.1. THE FRIENDSHIP THEOREM

Theorem 3.1

Theorem 3.1. THE FRIENDSHIP THEOREM. Let G be a simple graph in
which any two vertices (people) have exactly one common neighbor
(friend). Then G has a vertex of degree n — 1 (everyone's friend).

Proof. We give a proof by contradiction. ASSUME G is a friendship
graph and A < n— 1. We show first that G is regular.

Consider two nonadjacent vertices x and y where, say, d(x) > d(y). By
hypothesis, x and y have exactly one common neighbor; denote it as z.
For each neighbor v of x other than z, denote by f(v) the common
neighbor of v and y. Let N(x) = {z,v1,v2,...,v}. Then we have:
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Theorem 3.1. THE FRIENDSHIP THEOREM

Theorem 3.1 (continued 1)

Proof (continued). Since G cannot have components of size 1 nor two or
more components of size 2 or greater, then G must have just one
component; that is G, must be connected. Therefore, as argued above, G
(and hence G) is regular, say G is k-regular. As shown in the proof of
Theorem 2.2 (see equation (x*)), the number of 2-paths in graph

G=(V,G)is Z <d(2v)> so for G k-regular there are |V/| <§> = n(é)

vev
2-paths. Under our hypothesis, every pair of vertices of G determines a

unique 2-path (the path through the one common neighbor). So the

k
number of 2-paths also equals <,27) and we have n(z) = <,27> or

nk(kz—].):n(n;]-) ork2_k:n_1orn:k2—k+1.
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Theorem 3.1. THE FRIENDSHIP THEOREM

Theorem 3.1 (continued 2)

Proof (continued). Let A be the adjacency matrix of G. Then by
Exercise 3.1.A, A2 = J + (k — 1)I, where J is the n x n matrix all of whose
vertices are 1 and | is the n x n identity matrix. The eigenvalues of J are 0
(with algebraic multiplicity n — 1) and n (with algebraic multiplicity 1) by
Lemma 3.1.A. Now

det(A2 — Al) = det(J + (k — 1)l — Al) = det(J — (A — (k — D)I).

So we can convert eigenvalues of J to eigenvalues of A% by adding k — 1.
So the eigenvalues of A? are k — 1 (with algebraic multiplicity n — 1) and
n+ k — 1 (with algebraic multiplicity 1). Notice n = k? — k + 1 from the
previous paragraph, so n+ k — 1 = k? is the eigenvalue of AZ of algebraic
multiplicity 1. Recall that if X is an eigenvalue of square matrix A then \¥
is an eigenvalue of AX (see Theorem 5.1(1) in my online notes for Linear
Algebra [MATH 2010] on 5.1. Eigenvalues and Eigenvectors).

Graph Theory November 9, 2022 14 / 16

Theorem 3.1. THE FRIENDSHIP THEOREM

Theorem 3.1 (continued 4)

Theorem 3.1. THE FRIENDSHIP THEOREM. Let G be a simple graph in
which any two vertices (people) have exactly one common neighbor
(friend). Then G has a vertex of degree n — 1 (everyone's friend).

Proof (continued). So t?(k — 1) = k2 or

K2 k \2 k—1+1\2 1 \?
(k—1)2 (k—l) ( k-1 ) (+k_1> ©

so we must have k = 2 (and t = 2). Since n = k? — k + 1 then k =2
implies n = 3. But this CONTRADICTS our assumption that A < n—1
since A = 2 (because G is k-regular and we have k = 2). So the
assumption is false and A = n — 1 and there is a vertex of G of degree
n—1. L]
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Theorem 3.1. THE FRIENDSHIP THEOREM

Theorem 3.1 (continued 3)

Proof (continued). Therefore the eigenvalues of A (and so the
eigenvalues of G) are £y k — 1 (with total algebraic multiplicity of n — 1),
and k with multiplicity 1 (we have k as an eigenvalue, not —k, by Exercise
1.1.22a(ii)). Because G is simple (so that there are no loops) then the
diagonal entries of A are all 0 and so trace(A) = 0 (the trace of a matrix
is the sum of the diagonal entries; see my online notes for Theory of
Matrices [MATH 5090] on 3.1. Basic Definitions and Notation). Now
trace(A) equals the sum of the eigenvalues of A (see Theorem 3.8.6 in the
notes on 3.8. Eigenanalysis; Canonical Factorizations), so we must have

k — tv'k —1 =0 for some t € Z (since the eigenvalues of A are k,

+vk —1, and —vk — 1 as described above); that is, tvk — 1 = k.
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