Graph Theory

Chapter 3. Connected Graphs

3.1. Walks and Connection-Proofs of Theorems

Table of contents

(1) Lemma 3.1.A
(2) Theorem 3.1. The Friendship Theorem

Lemma 3.1.A

Lemma 3.1.A. Let J be the $n \times n$ matrix with all entries 1 . Then the eigenvalues of \mathbf{J} are 0 (with algebraic multiplicity $n-1$) and n (with algebraic multiplicity 1).

Proof. We show that the characteristic polynomial is $(-1)^{n} \lambda^{n-1}(\lambda-n)$, from which the result will follow. We establish this by mathematical induction. For $n=1$, we have $|\mathbf{J}-\lambda \mathbf{I}|=1-\lambda=(-1)^{1} \lambda^{0}(\lambda-1)$, establishing the base case. Notice that for $n=2$,

$$
\begin{gathered}
|\mathbf{J}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-1 \\
=\lambda^{2}-2 \lambda=\lambda(\lambda-2)=(-1)^{2} \lambda^{1}(\lambda-2)
\end{gathered}
$$

establishing another case. Suppose the claim holds for $n=k-1$ and consider the case $n=k$.

Lemma 3.1.A

Lemma 3.1.A. Let J be the $n \times n$ matrix with all entries 1 . Then the eigenvalues of \mathbf{J} are 0 (with algebraic multiplicity $n-1$) and n (with algebraic multiplicity 1).

Proof. We show that the characteristic polynomial is $(-1)^{n} \lambda^{n-1}(\lambda-n)$, from which the result will follow. We establish this by mathematical induction. For $n=1$, we have $|\mathbf{J}-\lambda \mathbf{I}|=1-\lambda=(-1)^{1} \lambda^{0}(\lambda-1)$, establishing the base case. Notice that for $n=2$,

$$
\begin{aligned}
& |\mathbf{J}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-1 \\
& =\lambda^{2}-2 \lambda=\lambda(\lambda-2)=(-1)^{2} \lambda^{1}(\lambda-2)
\end{aligned}
$$

establishing another case. Suppose the claim holds for $n=k-1$ and consider the case $n=k$.

Lemma 3.1.A (continued 1)

Proof (continued). Then expanding determinants along the first column,

$$
\begin{aligned}
&|\mathbf{J}-\lambda \mathbf{I}|\left|\begin{array}{ccccc}
1-\lambda & 1 & 1 & \cdots & 1 \\
1 & 1-\lambda & 1 & \cdots & 1 \\
1 & 1 & 1-\lambda & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 1 \cdots & 1-\lambda
\end{array}\right| \\
& \quad=(1-\lambda)\left|\begin{array}{ccccc}
1-\lambda & 1 & \cdots & 1 \\
1 & 1-\lambda & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1-\lambda
\end{array}\right|
\end{aligned}
$$

Lemma 3.1.A (continued 2)

Proof (continued).

$$
\begin{aligned}
& -(1)\left|\begin{array}{ccccc}
\mathbf{1} & 1 & 1 & \cdots & 1 \\
\mathbf{1} & 1-\lambda & 1 & \cdots & 1 \\
\mathbf{1} & 1 & 1-\lambda & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{1} & 1 & 1 & \cdots & 1-\lambda
\end{array}\right| \\
& +(1)\left|\begin{array}{ccccc}
1 & \mathbf{1} & 1 & \cdots & 1 \\
1-\lambda & \mathbf{1} & 1-\lambda & \cdots & 1 \\
1 & \mathbf{1} & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \mathbf{1} & 1 & \cdots & 1-\lambda
\end{array}\right|
\end{aligned}
$$

Lemma 3.1.A (continued 3)

Proof (continued).

$$
\begin{aligned}
& -(1)\left|\begin{array}{cccccc}
1 & 1 & \mathbf{1} & 1 & \cdots & 1 \\
1-\lambda & 1 & \mathbf{1} & 1-\lambda & \cdots & 1 \\
1 & 1-\lambda & \mathbf{1} & 1 & \cdots & 1 \\
1 & 1 & \mathbf{1} & 1-\lambda & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & \mathbf{1} & 1 & \cdots & 1-\lambda
\end{array}\right|+\cdots \\
& +(-1)^{k-1}(1)\left|\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & \mathbf{1} \\
1-\lambda & 1 & 1 & \cdots & 1 & \mathbf{1} \\
1 & 1-\lambda & 1 & \cdots & 1 & \mathbf{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 1-\lambda & \mathbf{1}
\end{array}\right| .
\end{aligned}
$$

Lemma 3.1.A (continued 4)

Proof (continued). By the induction hypothesis, the first term in $(*)$ is $(1-\lambda)(-1)^{k-1}\left(\lambda^{k-2}(\lambda-(k-1))\right.$. Now each of the other $k-1$ cofactors involve determinants of matrices with one column of all 1's (in bold faced; let this be column ℓ), to the left of which are all entries of 1 except for entries of $1-\lambda$ just below the diagonal entries, and to the right of which are all entries of 1 except for entries of $1-\lambda$ along the diagonal. First we use the first row of these matrices to eliminate the other entries of 1 . We subtract row 1 from each of the rows below it producing a $(k-1) \times(k-1)$ matrix with first row all 1 's, to the left of this column are all entries of 0 except for entries of $-\lambda$ just below the diagonal entries, and to the right of which are all entries of 0 except for entries of $-\lambda$ along the diagonal:

Lemma 3.1.A (continued 4)

Proof (continued). By the induction hypothesis, the first term in $(*)$ is $(1-\lambda)(-1)^{k-1}\left(\lambda^{k-2}(\lambda-(k-1))\right.$. Now each of the other $k-1$ cofactors involve determinants of matrices with one column of all 1's (in bold faced; let this be column ℓ), to the left of which are all entries of 1 except for entries of $1-\lambda$ just below the diagonal entries, and to the right of which are all entries of 1 except for entries of $1-\lambda$ along the diagonal. First we use the first row of these matrices to eliminate the other entries of 1 . We subtract row 1 from each of the rows below it producing a $(k-1) \times(k-1)$ matrix with first row all 1's, to the left of this column are all entries of 0 except for entries of $-\lambda$ just below the diagonal entries, and to the right of which are all entries of 0 except for entries of $-\lambda$ along the diagonal:

Lemma 3.1.A (continued 5)

Proof (continued).

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & \cdots & \mathbf{1} & \cdots & 1 & 1 \\
1-\lambda & 1 & 1 & \cdots & \mathbf{1} & \cdots & 1 & 1 \\
1 & 1-\lambda & 1 & \cdots & \mathbf{1} & \cdots & 1 & 1 \\
1 & 1 & 1-\lambda & \cdots & \mathbf{1} & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & \mathbf{1} & \cdots & 1-\lambda & 1 \\
1 & 1 & 1 & \cdots & \mathbf{1} & \cdots & 1 & 1-\lambda
\end{array}\right] \sim
$$

Lemma 3.1.A (continued 6)

Proof (continued). These new matrices have the same determinants as the original (respective) matrices (see Theorem 4.2.A. Properties of the Determinant from my online Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix). Expanding the determinants of the remaining new matrices along the column consisting of a 1 followed by 0's (the ℓ th column) gives

Lemma 3.1.A (continued 6)

Proof (continued). These new matrices have the same determinants as the original (respective) matrices (see Theorem 4.2.A. Properties of the Determinant from my online Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix). Expanding the determinants of the remaining new matrices along the column consisting of a 1 followed by 0 's (the ℓ th column) gives

$$
(-1)^{1+\ell}(1)\left|\begin{array}{cccc}
-\lambda & 0 & \cdots & 0 \\
0 & -\lambda & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & -\lambda
\end{array}\right|=(-1)^{1+\ell}(1)(-1)^{k-2} \lambda^{k-2} .
$$

Therefore $|\mathrm{J}-\lambda| \mid$

Lemma 3.1.A (continued 6)

Proof (continued). These new matrices have the same determinants as the original (respective) matrices (see Theorem 4.2.A. Properties of the Determinant from my online Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix). Expanding the determinants of the remaining new matrices along the column consisting of a 1 followed by 0 's (the ℓ th column) gives

$$
(-1)^{1+\ell}(1)\left|\begin{array}{cccc}
-\lambda & 0 & \cdots & 0 \\
0 & -\lambda & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots
\end{array}\right|=(-1)^{1+\ell}(1)(-1)^{k-2} \lambda^{k-2}
$$

Therefore $|\mathbf{J}-\lambda \mathbf{I}|$
$=(1-\lambda)(-1)^{k-1}\left(\lambda^{k-2}(\lambda-(k-1))\right)+\sum_{\ell=1}^{k-1}(-1)^{\ell}(1)(-1)^{1+\ell}(-1)^{k-2} \lambda^{k-2}$

Lemma 3.1.A (continued 7)

Lemma 3.1.A. Let \mathbf{J} be the $n \times n$ matrix with all entries 1 . Then the eigenvalues of \mathbf{J} are 0 (with algebraic multiplicity $n-1$) and n (with algebraic multiplicity 1).

Proof (continued).

$$
\begin{gathered}
(1-\lambda)(-1)^{k-1}\left(\lambda^{k-2}(\lambda-k+1)\right)+(k-1)(-1)^{k-1} \lambda^{k-2} \\
=(-1)^{k-1} \lambda^{k-2}((1-\lambda)(\lambda-k+1)+k-1) \\
=(-1)^{k-1} \lambda^{k-2}\left(\lambda-k+1-\lambda^{2}+\lambda k-\lambda+k-1\right) \\
=(-1)^{k-1} \lambda^{k-2}\left(-\lambda^{2}+\lambda k\right)=(-1)^{k} \lambda^{k-2}\left(\lambda^{2}-\lambda k\right)=(-1)^{k} \lambda^{k-1}(\lambda-k) .
\end{gathered}
$$

So the result holds for $n=k$ and therefore by Mathematical Induction holds for all $n \in \mathbb{N}$.

Theorem 3.1

Theorem 3.1. The Friendship Theorem. Let G be a simple graph in which any two vertices (people) have exactly one common neighbor (friend). Then G has a vertex of degree $n-1$ (everyone's friend). Proof. We give a proof by contradiction. ASSUME G is a friendship graph and $\Delta<n-1$. We show first that G is regular.

Theorem 3.1

Theorem 3.1. The Friendship Theorem. Let G be a simple graph in which any two vertices (people) have exactly one common neighbor (friend). Then G has a vertex of degree $n-1$ (everyone's friend). Proof. We give a proof by contradiction. ASSUME G is a friendship graph and $\Delta<n-1$. We show first that G is regular.

Consider two nonadjacent vertices x and y where, say, $d(x) \geq d(y)$. By hypothesis, x and y have exactly one common neighbor; denote it as z. For each neighbor v of x other than z, denote by $f(v)$ the common neighbor of v and y. Let $N(x)=\left\{z, v_{1}, v_{2}, \ldots, v_{\ell}\right\}$. Then we have:

Theorem 3.1

Theorem 3.1. The Friendship Theorem. Let G be a simple graph in which any two vertices (people) have exactly one common neighbor (friend). Then G has a vertex of degree $n-1$ (everyone's friend).
Proof. We give a proof by contradiction. ASSUME G is a friendship graph and $\Delta<n-1$. We show first that G is regular.

Consider two nonadjacent vertices x and y where, say, $d(x) \geq d(y)$. By hypothesis, x and y have exactly one common neighbor; denote it as z. For each neighbor v of x other than z, denote by $f(v)$ the common neighbor of v and y. Let $N(x)=\left\{z, v_{1}, v_{2}, \ldots, v_{\ell}\right\}$. Then we have:

Theorem 3.1

Theorem 3.1. The Friendship Theorem. Let G be a simple graph in which any two vertices (people) have exactly one common neighbor (friend). Then G has a vertex of degree $n-1$ (everyone's friend).
Proof. We give a proof by contradiction. ASSUME G is a friendship graph and $\Delta<n-1$. We show first that G is regular.

Consider two nonadjacent vertices x and y where, say, $d(x) \geq d(y)$. By hypothesis, x and y have exactly one common neighbor; denote it as z. For each neighbor v of x other than z, denote by $f(v)$ the common neighbor of v and y. Let $N(x)=\left\{z, v_{1}, v_{2}, \ldots, v_{\ell}\right\}$. Then we have:

Theorem 3.1 (continued 1)

Proof (continued). Now $f\left(v_{i}\right) \neq f\left(v_{j}\right)$ for $i \neq j$ because of the hypothesis that any two vertices (x and v_{i} here) have exactly one common neighbor. So f is a one-to-one (injective) mapping from $N(x) \backslash\{z\}$ to $N(y) \backslash\{z\}$. Since $|N(x) \backslash\{z\}|=d(x) \geq d(y)=|N(y) \backslash\{z\}|$ (since x and y are nonadjacent and $d(x) \geq d(y)$ here) then f is actually onto (surjective) and we have $d(x)=d(y)$. Since x and y are arbitrary nonadjacent vertices of G, then any two nonadjacent vertices of G have the same degree. Equivalently, any two adjacent vertices in the complement of G, \bar{G}, have the same degree (since $d_{\bar{G}}(v)=n-1-d_{G}(v)$ for all $v \in V$). From this it follows that if \bar{G} is connected then \bar{G} (and hence G) is regular. Since we assumed $\Delta<n-1$ then
$\delta(\bar{G})=n-1-\Delta(G)>0$ and so \bar{G} has no vectors of degree 0 ; that is, \bar{G} has no singleton components. Now \bar{G} cannot have two components each on two or more vertices, for then G would have a 4 -cycle in violation of the hypothesis of any two vertices having exactly one common neighbor.

Theorem 3.1 (continued 1)

Proof (continued). Now $f\left(v_{i}\right) \neq f\left(v_{j}\right)$ for $i \neq j$ because of the hypothesis that any two vertices (x and v_{i} here) have exactly one common neighbor. So f is a one-to-one (injective) mapping from $N(x) \backslash\{z\}$ to $N(y) \backslash\{z\}$. Since $|N(x) \backslash\{z\}|=d(x) \geq d(y)=|N(y) \backslash\{z\}|$ (since x and y are nonadjacent and $d(x) \geq d(y)$ here) then f is actually onto (surjective) and we have $d(x)=d(y)$. Since x and y are arbitrary nonadjacent vertices of G, then any two nonadjacent vertices of G have the same degree. Equivalently, any two adjacent vertices in the complement of G, \bar{G}, have the same degree (since $d_{\bar{G}}(v)=n-1-d_{G}(v)$ for all $v \in V$). From this it follows that if \bar{G} is connected then \bar{G} (and hence G) is regular. Since we assumed $\Delta<n-1$ then $\delta(\bar{G})=n-1-\Delta(G)>0$ and so \bar{G} has no vectors of degree 0 ; that is, \bar{G} has no singleton components. Now \bar{G} cannot have two components each on two or more vertices, for then G would have a 4 -cycle in violation of the hypothesis of any two vertices having exactly one common neighbor.

Theorem 3.1 (continued 1)

Proof (continued). Since \bar{G} cannot have components of size 1 nor two or more components of size 2 or greater, then \bar{G} must have just one component; that is \bar{G}, must be connected. Therefore, as argued above, \bar{G} (and hence G) is regular, say G is k-regular. As shown in the proof of Theorem 2.2 (see equation $(*)$), the number of 2-paths in graph $G=(V, G)$ is $\sum_{v \in V}\binom{d(v)}{2}$, so for $G k$-regular there are $|V|\binom{k}{2}=n\binom{k}{2}$ 2-paths. Under our hypothesis, every pair of vertices of G determines a unique 2-path (the path through the one common neighbor). So the number of 2-paths also equals $\binom{n}{2}$ and we have $n\binom{k}{2}=\binom{n}{2}$ or $\frac{n k(k-1)}{2}=\frac{n(n-1)}{2}$ or $k^{2}-k=n-1$ or $n=k^{2}-k+1$.

Theorem 3.1 (continued 2)

Proof (continued). Let \mathbf{A} be the adjacency matrix of G. Then by Exercise 3.1.A, $\mathbf{A}^{2}=\mathbf{J}+(k-1) \mathbf{I}$, where \mathbf{J} is the $n \times n$ matrix all of whose vertices are 1 and \mathbf{I} is the $n \times n$ identity matrix. The eigenvalues of \mathbf{J} are 0 (with algebraic multiplicity $n-1$) and n (with algebraic multiplicity 1) by Lemma 3.1.A. Now

$$
\operatorname{det}\left(\mathbf{A}^{2}-\lambda \mathbf{I}\right)=\operatorname{det}(\mathbf{J}+(k-1) \mathbf{I}-\lambda \mathbf{I})=\operatorname{det}(\mathbf{J}-(\lambda-(k-1)) \mathbf{I}) .
$$

So we can convert eigenvalues of \mathbf{J} to eigenvalues of \mathbf{A}^{2} by adding $k-1$. So the eigenvalues of \mathbf{A}^{2} are $k-1$ (with algebraic multiplicity $n-1$) and $n+k-1$ (with algebraic multiplicity 1). Notice $n=k^{2}-k+1$ from the previous paragraph, so $n+k-1=k^{2}$ is the eigenvalue of \mathbf{A}^{2} of algebraic multiplicity 1 . Recall that if λ is an eigenvalue of square matrix \mathbf{A} then λ^{k} is an eigenvalue of \mathbf{A}^{k} (see Theorem 5.1(1) in my online notes for Linear Algebra [MATH 2010] on 5.1. Eigenvalues and Eigenvectors).

Theorem 3.1 (continued 2)

Proof (continued). Let \mathbf{A} be the adjacency matrix of G. Then by Exercise 3.1.A, $\mathbf{A}^{2}=\mathbf{J}+(k-1) \mathbf{I}$, where \mathbf{J} is the $n \times n$ matrix all of whose vertices are 1 and \mathbf{I} is the $n \times n$ identity matrix. The eigenvalues of \mathbf{J} are 0 (with algebraic multiplicity $n-1$) and n (with algebraic multiplicity 1) by Lemma 3.1.A. Now

$$
\operatorname{det}\left(\mathbf{A}^{2}-\lambda \mathbf{I}\right)=\operatorname{det}(\mathbf{J}+(k-1) \mathbf{I}-\lambda \mathbf{I})=\operatorname{det}(\mathbf{J}-(\lambda-(k-1)) \mathbf{I}) .
$$

So we can convert eigenvalues of \mathbf{J} to eigenvalues of \mathbf{A}^{2} by adding $k-1$. So the eigenvalues of \mathbf{A}^{2} are $k-1$ (with algebraic multiplicity $n-1$) and $n+k-1$ (with algebraic multiplicity 1). Notice $n=k^{2}-k+1$ from the previous paragraph, so $n+k-1=k^{2}$ is the eigenvalue of \mathbf{A}^{2} of algebraic multiplicity 1 . Recall that if λ is an eigenvalue of square matrix \mathbf{A} then λ^{k} is an eigenvalue of \mathbf{A}^{k} (see Theorem 5.1(1) in my online notes for Linear Algebra [MATH 2010] on 5.1. Eigenvalues and Eigenvectors).

Theorem 3.1 (continued 3)

Proof (continued). Therefore the eigenvalues of \mathbf{A} (and so the eigenvalues of G) are $\pm \sqrt{k-1}$ (with total algebraic multiplicity of $n-1$), and k with multiplicity 1 (we have k as an eigenvalue, not $-k$, by Exercise 1.1.22a(ii)). Because G is simple (so that there are no loops) then the diagonal entries of \mathbf{A} are all 0 and so $\operatorname{trace}(\mathbf{A})=0$ (the trace of a matrix is the sum of the diagonal entries; see my online notes for Theory of Matrices [MATH 5090] on 3.1. Basic Definitions and Notation). trace (\mathbf{A}) equals the sum of the eigenvalues of \mathbf{A} (see Theorem 3.8.6 in the notes on 3.8. Eigenanalysis; Canonical Factorizations), so we must have $k-t \sqrt{k-1}=0$ for some $t \in \mathbb{Z}$ (since the eigenvalues of A are k, $+\sqrt{k-1}$, and $-\sqrt{k-1}$ as described above); that is, $t \sqrt{k-1}=k$.

Theorem 3.1 (continued 3)

Proof (continued). Therefore the eigenvalues of \mathbf{A} (and so the eigenvalues of G) are $\pm \sqrt{k-1}$ (with total algebraic multiplicity of $n-1$), and k with multiplicity 1 (we have k as an eigenvalue, not $-k$, by Exercise 1.1.22a(ii)). Because G is simple (so that there are no loops) then the diagonal entries of \mathbf{A} are all 0 and so $\operatorname{trace}(\mathbf{A})=0$ (the trace of a matrix is the sum of the diagonal entries; see my online notes for Theory of Matrices [MATH 5090] on 3.1. Basic Definitions and Notation). Now trace (\mathbf{A}) equals the sum of the eigenvalues of \mathbf{A} (see Theorem 3.8.6 in the notes on 3.8. Eigenanalysis; Canonical Factorizations), so we must have $k-t \sqrt{k-1}=0$ for some $t \in \mathbb{Z}$ (since the eigenvalues of A are k, $+\sqrt{k-1}$, and $-\sqrt{k-1}$ as described above); that is, $t \sqrt{k-1}=k$.

Theorem 3.1 (continued 4)

Theorem 3.1. The Friendship Theorem. Let G be a simple graph in which any two vertices (people) have exactly one common neighbor (friend). Then G has a vertex of degree $n-1$ (everyone's friend).

Proof (continued). So $t^{2}(k-1)=k^{2}$ or

$$
t^{2}=\frac{k^{2}}{(k-1)^{2}}=\left(\frac{k}{k-1}\right)^{2}=\left(\frac{k-1+1}{k-1}\right)^{2}=\left(1+\frac{1}{k-1}\right)^{2} \in \mathbb{N}
$$

so we must have $k=2$ (and $t=2$). Since $n=k^{2}-k+1$ then $k=2$ implies $n=3$. But this CONTRADICTS our assumption that $\Delta<n-1$ since $\Delta=2$ (because G is k-regular and we have $k=2$). So the assumption is false and $\Delta=n-1$ and there is a vertex of G of degree $n-1$.

