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Lemma 3.1.A

Lemma 3.1.A

Lemma 3.1.A. Let J be the n × n matrix with all entries 1. Then the
eigenvalues of J are 0 (with algebraic multiplicity n − 1) and n (with
algebraic multiplicity 1).

Proof. We show that the characteristic polynomial is (−1)nλn−1(λ− n),
from which the result will follow. We establish this by mathematical
induction. For n = 1, we have |J− λI| = 1− λ = (−1)1λ0(λ− 1),
establishing the base case. Notice that for n = 2,

|J− λI| =
∣∣∣∣ 1− λ 1

1 1− λ

∣∣∣∣ = (1− λ)2 − 1

= λ2 − 2λ = λ(λ− 2) = (−1)2λ1(λ− 2)

establishing another case. Suppose the claim holds for n = k − 1 and
consider the case n = k.
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Lemma 3.1.A

Lemma 3.1.A (continued 1)

Proof (continued). Then expanding determinants along the first column,

|J− λI| =

∣∣∣∣∣∣∣∣∣∣∣

1− λ 1 1 · · · 1
1 1− λ 1 · · · 1
1 1 1− λ · · · 1
...

...
...

. . .
...

1 1 1 1 · · · 1− λ

∣∣∣∣∣∣∣∣∣∣∣

= (1− λ)

∣∣∣∣∣∣∣∣∣
1− λ 1 · · · 1

1 1− λ · · · 1
...

...
. . .

...
1 1 · · · 1− λ

∣∣∣∣∣∣∣∣∣
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Lemma 3.1.A

Lemma 3.1.A (continued 2)

Proof (continued).

−(1)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 1− λ 1 · · · 1
1 1 1− λ · · · 1
...

...
...

. . .
...

1 1 1 · · · 1− λ

∣∣∣∣∣∣∣∣∣∣∣

+(1)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1− λ 1 1− λ · · · 1

1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1− λ

∣∣∣∣∣∣∣∣∣∣∣
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Lemma 3.1.A

Lemma 3.1.A (continued 3)

Proof (continued).

−(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1
1− λ 1 1 1− λ · · · 1

1 1− λ 1 1 · · · 1
1 1 1 1− λ · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · 1− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·

+(−1)k−1(1)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1
1− λ 1 1 · · · 1 1

1 1− λ 1 · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · 1− λ 1

∣∣∣∣∣∣∣∣∣∣∣
. (∗)
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Lemma 3.1.A

Lemma 3.1.A (continued 4)

Proof (continued). By the induction hypothesis, the first term in (∗) is
(1− λ)(−1)k−1(λk−2(λ− (k − 1)). Now each of the other k − 1 cofactors
involve determinants of matrices with one column of all 1’s (in bold faced;
let this be column `), to the left of which are all entries of 1 except for
entries of 1− λ just below the diagonal entries, and to the right of which
are all entries of 1 except for entries of 1− λ along the diagonal. First we
use the first row of these matrices to eliminate the other entries of 1. We
subtract row 1 from each of the rows below it producing a (k−1)× (k−1)
matrix with first row all 1’s, to the left of this column are all entries of 0
except for entries of −λ just below the diagonal entries, and to the right
of which are all entries of 0 except for entries of −λ along the diagonal:
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Lemma 3.1.A

Lemma 3.1.A (continued 5)

Proof (continued).

1 1 1 · · · 1 · · · 1 1
1− λ 1 1 · · · 1 · · · 1 1

1 1− λ 1 · · · 1 · · · 1 1
1 1 1− λ · · · 1 · · · 1 1
...

...
... · · ·

... · · ·
...

...
1 1 1 · · · 1 · · · 1− λ 1
1 1 1 · · · 1 · · · 1 1− λ


∼



1 1 1 · · · 1 · · · 1 1
−λ 0 0 · · · 0 · · · 0 0
0 −λ 0 · · · 0 · · · 0 0
0 0 −λ · · · 0 · · · 0 0
...

...
... · · ·

... · · ·
...

...
0 0 0 · · · 0 · · · −λ 0
0 0 0 · · · 0 · · · 0 −λ


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Lemma 3.1.A

Lemma 3.1.A (continued 6)

Proof (continued). These new matrices have the same determinants as
the original (respective) matrices (see Theorem 4.2.A. Properties of the
Determinant from my online Linear Algebra [MATH 2010] notes on 4.2.
The Determinant of a Square Matrix). Expanding the determinants of the
remaining new matrices along the column consisting of a 1 followed by 0’s
(the `th column) gives

(−1)1+`(1)

∣∣∣∣∣∣∣∣∣
−λ 0 · · · 0
0 −λ · · · 0
...

...
. . .

...
0 0 · · · −λ

∣∣∣∣∣∣∣∣∣ = (−1)1+`(1)(−1)k−2λk−2.

Therefore |J− λI|

= (1− λ)(−1)k−1(λk−2(λ− (k − 1))) +
k−1∑
`=1

(−1)`(1)(−1)1+`(−1)k−2λk−2
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Lemma 3.1.A

Lemma 3.1.A (continued 7)

Lemma 3.1.A. Let J be the n × n matrix with all entries 1. Then the
eigenvalues of J are 0 (with algebraic multiplicity n − 1) and n (with
algebraic multiplicity 1).

Proof (continued).

(1− λ)(−1)k−1(λk−2(λ− k + 1)) + (k − 1)(−1)k−1λk−2

= (−1)k−1λk−2((1− λ)(λ− k + 1) + k − 1)

= (−1)k−1λk−2(λ− k + 1− λ2 + λk − λ + k − 1)

= (−1)k−1λk−2(−λ2 + λk) = (−1)kλk−2(λ2 − λk) = (−1)kλk−1(λ− k).

So the result holds for n = k and therefore by Mathematical Induction
holds for all n ∈ N.
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Theorem 3.1. The Friendship Theorem

Theorem 3.1

Theorem 3.1. The Friendship Theorem. Let G be a simple graph in
which any two vertices (people) have exactly one common neighbor
(friend). Then G has a vertex of degree n − 1 (everyone’s friend).

Proof. We give a proof by contradiction. ASSUME G is a friendship
graph and ∆ < n − 1. We show first that G is regular.

Consider two nonadjacent vertices x and y where, say, d(x) ≥ d(y). By
hypothesis, x and y have exactly one common neighbor; denote it as z .
For each neighbor v of x other than z , denote by f (v) the common
neighbor of v and y . Let N(x) = {z , v1, v2, . . . , v`}. Then we have:
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Theorem 3.1. The Friendship Theorem

Theorem 3.1 (continued 1)

Proof (continued). Now f (vi ) 6= f (vj) for i 6= j because of the
hypothesis that any two vertices (x and vi here) have exactly one common
neighbor. So f is a one-to-one (injective) mapping from N(x) \ {z} to
N(y) \ {z}. Since |N(x) \ {z}| = d(x) ≥ d(y) = |N(y) \ {z}| (since x and
y are nonadjacent and d(x) ≥ d(y) here) then f is actually onto
(surjective) and we have d(x) = d(y). Since x and y are arbitrary
nonadjacent vertices of G , then any two nonadjacent vertices of G have
the same degree. Equivalently, any two adjacent vertices in the
complement of G , G , have the same degree (since dG (v) = n − 1− dG (v)
for all v ∈ V ). From this it follows that if G is connected then G (and
hence G ) is regular. Since we assumed ∆ < n − 1 then
δ(G ) = n − 1−∆(G ) > 0 and so G has no vectors of degree 0; that is, G
has no singleton components. Now G cannot have two components each
on two or more vertices, for then G would have a 4-cycle in violation of
the hypothesis of any two vertices having exactly one common neighbor.
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Theorem 3.1. The Friendship Theorem

Theorem 3.1 (continued 1)

Proof (continued). Since G cannot have components of size 1 nor two or
more components of size 2 or greater, then G must have just one
component; that is G , must be connected. Therefore, as argued above, G
(and hence G ) is regular, say G is k-regular. As shown in the proof of
Theorem 2.2 (see equation (∗)), the number of 2-paths in graph

G = (V ,G ) is
∑
v∈V

(
d(v)

2

)
, so for G k-regular there are |V |

(
k

2

)
= n

(
k

2

)
2-paths. Under our hypothesis, every pair of vertices of G determines a
unique 2-path (the path through the one common neighbor). So the

number of 2-paths also equals

(
n

2

)
and we have n

(
k

2

)
=

(
n

2

)
or

nk(k − 1)

2
=

n(n − 1)

2
or k2 − k = n − 1 or n = k2 − k + 1.
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Theorem 3.1. The Friendship Theorem

Theorem 3.1 (continued 2)

Proof (continued). Let A be the adjacency matrix of G . Then by
Exercise 3.1.A, A2 = J + (k − 1)I, where J is the n× n matrix all of whose
vertices are 1 and I is the n× n identity matrix. The eigenvalues of J are 0
(with algebraic multiplicity n − 1) and n (with algebraic multiplicity 1) by
Lemma 3.1.A. Now

det(A2 − λI) = det(J + (k − 1)I− λI) = det(J− (λ− (k − 1))I).

So we can convert eigenvalues of J to eigenvalues of A2 by adding k − 1.
So the eigenvalues of A2 are k − 1 (with algebraic multiplicity n − 1) and
n + k − 1 (with algebraic multiplicity 1). Notice n = k2 − k + 1 from the
previous paragraph, so n + k − 1 = k2 is the eigenvalue of A2 of algebraic
multiplicity 1. Recall that if λ is an eigenvalue of square matrix A then λk

is an eigenvalue of Ak (see Theorem 5.1(1) in my online notes for Linear
Algebra [MATH 2010] on 5.1. Eigenvalues and Eigenvectors).
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Theorem 3.1. The Friendship Theorem

Theorem 3.1 (continued 3)

Proof (continued). Therefore the eigenvalues of A (and so the
eigenvalues of G ) are ±

√
k − 1 (with total algebraic multiplicity of n − 1),

and k with multiplicity 1 (we have k as an eigenvalue, not −k, by Exercise
1.1.22a(ii)). Because G is simple (so that there are no loops) then the
diagonal entries of A are all 0 and so trace(A) = 0 (the trace of a matrix
is the sum of the diagonal entries; see my online notes for Theory of
Matrices [MATH 5090] on 3.1. Basic Definitions and Notation). Now
trace(A) equals the sum of the eigenvalues of A (see Theorem 3.8.6 in the
notes on 3.8. Eigenanalysis; Canonical Factorizations), so we must have
k − t

√
k − 1 = 0 for some t ∈ Z (since the eigenvalues of A are k,

+
√

k − 1, and −
√

k − 1 as described above); that is, t
√

k − 1 = k.
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Theorem 3.1. The Friendship Theorem

Theorem 3.1 (continued 4)

Theorem 3.1. The Friendship Theorem. Let G be a simple graph in
which any two vertices (people) have exactly one common neighbor
(friend). Then G has a vertex of degree n − 1 (everyone’s friend).

Proof (continued). So t2(k − 1) = k2 or

t2 =
k2

(k − 1)2
=

(
k

k − 1

)2

=

(
k − 1 + 1

k − 1

)2

=

(
1 +

1

k − 1

)2

∈ N

so we must have k = 2 (and t = 2). Since n = k2 − k + 1 then k = 2
implies n = 3. But this CONTRADICTS our assumption that ∆ < n − 1
since ∆ = 2 (because G is k-regular and we have k = 2). So the
assumption is false and ∆ = n − 1 and there is a vertex of G of degree
n − 1.
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