Graph Theory

Chapter 3. Connected Graphs 3.2. Cut Edges—Proofs of Theorems

Table of contents

Proposition 3.2

Proposition 3.2. An edge e of a graph G is a cut edge of a graph G if and only if $\{e\}$ belongs to no cycle of G.

Proof. Suppose *e* is a cut edge of graph *G*. Then $c(G \setminus e) = c(G) + 1$ so graph $G \setminus e$ has more than one connected component and hence $G \setminus e$ has one more component than *G* so that there are different components of $G \setminus e$, *X* and *Y*, such that one end of *e* is in *X* and the other end of *e* is in *Y*; say e = xy where $x \in X$ and $y \in Y$. Since *X* and *Y* are different components of $G \setminus e$, so *e* lies in no cycle of *G* (or else the cycle with *e* deleted would be an (X, Y)-path in $G \setminus e$).

Graph Theory

Proposition 3.2

Proposition 3.2. An edge e of a graph G is a cut edge of a graph G if and only if $\{e\}$ belongs to no cycle of G.

Proof. Suppose *e* is a cut edge of graph *G*. Then $c(G \setminus e) = c(G) + 1$ so graph $G \setminus e$ has more than one connected component and hence $G \setminus e$ has one more component than *G* so that there are different components of $G \setminus e$, *X* and *Y*, such that one end of *e* is in *X* and the other end of *e* is in *Y*; say e = xy where $x \in X$ and $y \in Y$. Since *X* and *Y* are different components of $G \setminus e$, so *e* lies in no cycle of *G* (or else the cycle with *e* deleted would be an (X, Y)-path in $G \setminus e$).

Suppose e = xy is not a cut edge of G. Then x and y belong to the same component of $G \setminus e$ (and $c(G) = c(G \setminus e)$). So by Exercise 3.1.4 (with $X = \{x\}$ and $Y = \{y\}$ in the notation of the exercise) there is an xy-path P in $G \setminus e$. Then P + e is a cycle in G containing edge e. That is, if e is not a cut edge of G then e is in some cycle of G.

C

Proposition 3.2

Proposition 3.2. An edge e of a graph G is a cut edge of a graph G if and only if $\{e\}$ belongs to no cycle of G.

Proof. Suppose *e* is a cut edge of graph *G*. Then $c(G \setminus e) = c(G) + 1$ so graph $G \setminus e$ has more than one connected component and hence $G \setminus e$ has one more component than *G* so that there are different components of $G \setminus e$, *X* and *Y*, such that one end of *e* is in *X* and the other end of *e* is in *Y*; say e = xy where $x \in X$ and $y \in Y$. Since *X* and *Y* are different components of $G \setminus e$, so *e* lies in no cycle of *G* (or else the cycle with *e* deleted would be an (X, Y)-path in $G \setminus e$).

Suppose e = xy is not a cut edge of G. Then x and y belong to the same component of $G \setminus e$ (and $c(G) = c(G \setminus e)$). So by Exercise 3.1.4 (with $X = \{x\}$ and $Y = \{y\}$ in the notation of the exercise) there is an xy-path P in $G \setminus e$. Then P + e is a cycle in G containing edge e. That is, if e is not a cut edge of G then e is in some cycle of G.

()