Graph Theory

Chapter 3. Connected Graphs
3.2. Cut Edges-Proofs of Theorems

Table of contents

(1) Proposition 3.2

Proposition 3.2

Proposition 3.2. An edge e of a graph G is a cut edge of a graph G if and only if $\{e\}$ belongs to no cycle of G.

Proof. Suppose e is a cut edge of graph G. Then $c(G \backslash e)=c(G)+1$ so graph $G \backslash e$ has more than one connected component and hence $G \backslash e$ has one more component than G so that there are different components of $G \backslash e, X$ and Y, such that one end of e is in X and the other end of e is in Y; say $e=x y$ where $x \in X$ and $y \in Y$. Since X and Y are different components of $G \backslash e$ then by Exercise 3.1.4 there is no (X, Y)-path in $G \backslash e$, so e lies in no cycle of G (or else the cycle with e deleted would be an (X, Y)-path in $G \backslash e)$.

Proposition 3.2

Proposition 3.2. An edge e of a graph G is a cut edge of a graph G if and only if $\{e\}$ belongs to no cycle of G.

Proof. Suppose e is a cut edge of graph G. Then $c(G \backslash e)=c(G)+1$ so graph $G \backslash e$ has more than one connected component and hence $G \backslash e$ has one more component than G so that there are different components of $G \backslash e, X$ and Y, such that one end of e is in X and the other end of e is in Y; say $e=x y$ where $x \in X$ and $y \in Y$. Since X and Y are different components of $G \backslash e$ then by Exercise 3.1.4 there is no (X, Y)-path in $G \backslash e$, so e lies in no cycle of G (or else the cycle with e deleted would be an (X, Y)-path in $G \backslash e)$.

Suppose $e=x y$ is not a cut edge of G. Then x and y belong to the same component of $G \backslash e$ (and $c(G)=c(G \backslash e)$). So by Exercise 3.1.4 (with $X=\{x\}$ and $Y=\{y\}$ in the notation of the exercise) there is an $x y$-path P in $G \backslash e$. Then $P+e$ is a cycle in G containing edge e. That is, if e is not a cut edge of G then e is in some cycle of G.

Proposition 3.2

Proposition 3.2. An edge e of a graph G is a cut edge of a graph G if and only if $\{e\}$ belongs to no cycle of G.

Proof. Suppose e is a cut edge of graph G. Then $c(G \backslash e)=c(G)+1$ so graph $G \backslash e$ has more than one connected component and hence $G \backslash e$ has one more component than G so that there are different components of $G \backslash e, X$ and Y, such that one end of e is in X and the other end of e is in Y; say $e=x y$ where $x \in X$ and $y \in Y$. Since X and Y are different components of $G \backslash e$ then by Exercise 3.1.4 there is no (X, Y)-path in $G \backslash e$, so e lies in no cycle of G (or else the cycle with e deleted would be an (X, Y)-path in $G \backslash e)$.

Suppose $e=x y$ is not a cut edge of G. Then x and y belong to the same component of $G \backslash e$ (and $c(G)=c(G \backslash e)$). So by Exercise 3.1.4 (with $X=\{x\}$ and $Y=\{y\}$ in the notation of the exercise) there is an $x y$-path P in $G \backslash e$. Then $P+e$ is a cycle in G containing edge e. That is, if e is not a cut edge of G then e is in some cycle of G.

