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Lemma 3.3.A

Lemma 3.3.A

Lemma 3.3.A. If G is an Eulerian graph then G is even.

Proof. Let the walk W = v0e1v1e2v2 · · · vm−1emv0 be an Euler tour of G .
The internal vertices of W , namely v1, v2, . . . , vm−1, are incident with
edges in W 2 at a time; for i = 1, 2, . . . ,m − 1 we have vi is incident with
edges ei and ei+1. Since the edges are distinct in an Euler tour then, each
internal vertex in an Euler tour (i.e., each internal vertex of W ) is of even
degree.

Now v0 may also appear in the set of vertices {v1, v2, . . . , vm−1}
and it will be incident to an even number of edges in the counting process
used for these vertices. But v0 is also incident to edges e1 and em, so its
total degree is even as well. That is (since G is connected, by the
definition of “tour”), each vertex of G is of even degree and G is an even
graph, as claimed.
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Theorem 3.4

Theorem 3.4

Theorem 3.4. If G is a connected even graph, then the walk W returned
by Fleury’s Algorithm is an Euler tour of G .

Proof. Since the algorithm chooses an edge to add to the walk W under
construction and then deletes that edge (when replacing F by F \ e) from
those which may be chosen in subsequent steps, then the edges of walk W
must be distinct and so the walk is a trail throughout the procedure.

The
algorithm starts with initial vertex u of W , so in graph F we have
dF (u) = dG (u) − 1 initially and remains so unless the walk returns to u
and continues on, so that dF (u) drops by 2 and dF (u) remains odd. Since
G is an even graph by hypothesis, the algorithm cannot terminate at some
x 6= u since such vertex x is of even degree in G and when W has x as its
terminal vertex we then have dF (x) odd so that ∂F (x) 6= ∅ and the
algorithm does not end. So the algorithm and the walk W produced can
only terminate at vertex u. Hence the algorithm produces a closed trail of
G with vertex u as its initial and terminal vertex. We now need to confirm
that W includes all edges of G . We do so with a proof by contradiction.
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Theorem 3.4

Theorem 3.4 (continued 1)

Proof (continued). ASSUME that W , the walk produced by Fleury’s
Algorithm, is not an Euler tour of G . Let X be the set of vertices of
positive degree in subgraph F at the stage when the algorithm terminates.
Then X 6= ∅ (since W is assumed to omit some edge(s) of G ), G is even
by hypothesis, and W determines an even induced subgraph of G , so the
induced subgraph F [X ] is an even subgraph of G . As described above, the
algorithm must terminate at vertex u so dF (u) = 0, u 6∈ X , and so
u ∈ V \ X so that V \ X 6= ∅. Now ∂G (X ) 6= ∅, or else X and V \ X
would form a “separation” of G , but G is hypothesized to be connected.
But ∂F (X ) = ∅ since each vertex of V \ X has degree 0 in F . Since the
algorithm selects edges for inclusion in W (and then deletes those edges in
the creation of F ), all of the edges of ∂G (X ) must have been chosen for W
since, when the algorithm ended, we had ∂F (X ) = ∅. Let e = xy be the
last edge of ∂G (X ) chosen for inclusion in W , where x ∈ X and y ∈ V \X .
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Theorem 3.4

Theorem 3.4 (continued 2)

Proof (continued). At the step when e was chosen, graph F must have
included edge e and edge e must be a cut edge of F (since this is the step
at which the last edge of ∂G (X ) was added to W so that
c(F \ e) = c(F ) + 1 because F \ e has a “new” component which is a
subset of V \ X and includes y ; see the figure below).

But when the algorithm ended, the degree of x in the final graph F was
positive so that there was another choice of an edge e ′ to add to W when
cut edge e was chosen, since dF (x) > 0 when the algorithm ends.
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Theorem 3.4

Theorem 3.4 (continued 3)

Theorem 3.4. If G is a connected even graph, then the walk W returned
by Fleury’s Algorithm is an Euler tour of G .

Proof (continued). As argued above, all vertices of X are of even
positive degree in F [X ] when the algorithm ends. So by Exercise 3.2.3(a),
the connected component of F \ e containing vertex x has no cut edges so
that e ′ is not a cut edge of F \ e (and so not of F itself before edge e was
chosen). But this violates the algorithm since it will not add cut edge e to
W since non-cut edge e ′ is available for inclusion in W , a
CONTRADICTION. So the assumption that the walk produced by the
algorithm is not an Euler tour is false. Hence, an Euler tour of G is
produced by the algorithm, as claimed.
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