Graph Theory

Chapter 3. Connected Graphs

3.4. Connection in Digraphs-Proofs of Theorems

Table of contents

(1) Theorem 3.6

Theorem 3.6

Theorem 3.6. Let x and y be two vertices of a digraph D. Then y is reachable from x in D if and only if the outcut $\partial^{+}(X) \neq \varnothing$ for every subset X of V which contains x but not y.

Proof. Suppose that y is reachable from x. Then thee is a directed (x, y)-path P in V. Let X be a subset of V which contains x but not y. Directed path P has its initial vertex in X and its final vertex in $V \backslash X$. Let u be the last vertex of P which belongs to X and let v be its successor in P. Then arc (u, v) is in $\partial^{+}(X)$ and so $\partial^{+}(X) \neq \varnothing$.

Theorem 3.6

Theorem 3.6. Let x and y be two vertices of a digraph D. Then y is reachable from x in D if and only if the outcut $\partial^{+}(X) \neq \varnothing$ for every subset X of V which contains x but not y.

Proof. Suppose that y is reachable from x. Then thee is a directed (x, y)-path P in V. Let X be a subset of V which contains x but not y. Directed path P has its initial vertex in X and its final vertex in $V \backslash X$. Let u be the last vertex of P which belongs to X and let v be its successor in P. Then arc (u, v) is in $\partial^{+}(X)$ and so $\partial^{+}(X) \neq \varnothing$.

For the converse, suppose y is not reachable from x. Let X be the set of vertices which are reachable from x. Then $x \in X$ (since x is reachable from x be the trivial directed path from x to x) and $y \notin X$. So $y \in V \backslash X$ and $V \backslash X$ is nonempty. But no vertex of $V \backslash X$ is reachable from x, so the outcut $\partial^{+}(X)=\varnothing$.

Theorem 3.6

Theorem 3.6. Let x and y be two vertices of a digraph D. Then y is reachable from x in D if and only if the outcut $\partial^{+}(X) \neq \varnothing$ for every subset X of V which contains x but not y.

Proof. Suppose that y is reachable from x. Then thee is a directed (x, y)-path P in V. Let X be a subset of V which contains x but not y. Directed path P has its initial vertex in X and its final vertex in $V \backslash X$. Let u be the last vertex of P which belongs to X and let v be its successor in P. Then arc (u, v) is in $\partial^{+}(X)$ and so $\partial^{+}(X) \neq \varnothing$.

For the converse, suppose y is not reachable from x. Let X be the set of vertices which are reachable from x. Then $x \in X$ (since x is reachable from x be the trivial directed path from x to x) and $y \notin X$. So $y \in V \backslash X$ and $V \backslash X$ is nonempty. But no vertex of $V \backslash X$ is reachable from x, so the outcut $\partial^{+}(X)=\varnothing$.

