Graph Theory

Chapter 3. Connected Graphs 3.5. Cycle Double Covers—Proofs of Theorems

Table of contents

Proposition 3.8

Proposition 3.8. If a graph has a cycle covering in which each edge is covered at most twice, then it has a cycle double cover.

Proof. Let family $C = \{C_1, C_2, \ldots, C_\ell\}$ be a cycle covering of a graph G in which each edge of G is covered at most twice. The symmetric difference

$$\triangle \{ E(C) \mid C \in \mathcal{C} \} = (\cdots ((C_1 \triangle C_2) \triangle C_3) \cdots \triangle C_{\ell})$$

is the set of edges of G which are covered just once by C (associativity of the symmetric difference is shown in Exercise 2.6.2(a)).

Proposition 3.8

Proposition 3.8. If a graph has a cycle covering in which each edge is covered at most twice, then it has a cycle double cover.

Proof. Let family $C = \{C_1, C_2, \ldots, C_\ell\}$ be a cycle covering of a graph G in which each edge of G is covered at most twice. The symmetric difference

$$\triangle \{ E(C) \mid C \in \mathcal{C} \} = (\cdots ((C_1 \triangle C_2) \triangle C_3) \cdots \triangle C_{\ell})$$

is the set of edges of G which are covered just once by C (associativity of the symmetric difference is shown in Exercise 2.6.2(a)). By Corollary 2.16 (and induction), the set of edges $\triangle \{E(C) \mid C \in C\}$ induces an even subgraph of G. Then by Veblen's Theorem (Theorem 2.7), this even subgraph has a cycle decomposition C'. So the edges of G that are covered only once by C are covered a second time by C' and so $C \cup C'$ is a cycle double cover of G.

Proposition 3.8

Proposition 3.8. If a graph has a cycle covering in which each edge is covered at most twice, then it has a cycle double cover.

Proof. Let family $C = \{C_1, C_2, \ldots, C_\ell\}$ be a cycle covering of a graph G in which each edge of G is covered at most twice. The symmetric difference

$$\triangle \{ E(C) \mid C \in \mathcal{C} \} = (\cdots ((C_1 \triangle C_2) \triangle C_3) \cdots \triangle C_\ell)$$

is the set of edges of G which are covered just once by C (associativity of the symmetric difference is shown in Exercise 2.6.2(a)). By Corollary 2.16 (and induction), the set of edges $\triangle \{E(C) \mid C \in C\}$ induces an even subgraph of G. Then by Veblen's Theorem (Theorem 2.7), this even subgraph has a cycle decomposition C'. So the edges of G that are covered only once by C are covered a second time by C' and so $C \cup C'$ is a cycle double cover of G.