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Proposition 4.1

Proposition 4.1

Proposition 4.1. In a tree, any two vertices are connected by exactly one
path.

Proof. Since a tree is connected, then by Exercise 3.1.4 any two vertices
are connected by at least one path. ASSUME there are two or more
distinct paths connecting two vertices. Then by Exercise 2.2.12 the tree
contains a cycle, a CONTRADICTION to the definition of tree. So the
assumption is false and there is exactly one path connecting any two
vertices, as claimed.
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Theorem 4.3

Theorem 4.3

Theorem 4.3. If T is a tree, then e(T ) = v(T )− 1.

Proof. We give a proof by induction based on v(T ). When v(T ) = 1, T
is the trivial tree with no edges so that e(T ) = 0 (notice that a tree
cannot have any loops since a loop is a cycle of length 1), the claim holds
for v(T ) = 1, and this gives the base case.

Now suppose the result holds for all trees on k vertices and consider T a
tree on v(T ) = k + 1 ≥ 2 vertices. By Proposition 4.2, T has a leaf w .
Since w is a leaf then d(w) = 1 and so uw ∈ E (T ) for some u ∈ V (T ).
Consider T − w . Since T is acyclic and T − w is a subgraph of T then
T − w is acyclic. ASSUME T − w is not connected. Then there are
nonempty subsets X and Y of V (T − w) such that no edge of T − w has
one end in X and one end in Y (i.e., X and Y are a “separation” of
T − w). If u ∈ X then X ∪ {w} and Y form a separation of T so that T
is not connected, a CONTRADICTION. If u ∈ Y then X and Y ∪ {w}
form a separation of T so that T is not connected, a CONTRADICTION.
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Theorem 4.3

Theorem 4.3 (continued)

Theorem 4.3. If T is a tree, then e(T ) = v(T )− 1.

Proof (continued). So the assumption that T − w is not connected is
false. So T − w is a connected acyclic graph; i.e., T − w is a tree. By
construction,

v(T − w) = v(T )− 1 = k and e(T − w) = e(T )− 1. (∗)

By the induction hypothesis k − 1 = e(T − w) = v(T − w)− 1.
Therefore we have by (∗) that k − 1 = e(T )− 1 = (v(T )− 1)− 1 or
k = e(T ) = v(T )− 1 where v(T ) = k + 1. So the result holds for
v(T ) = k + 1 and hence by mathematical induction e(T ) = v(T )− 1 for
any tree T , as claimed.
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Corollary 4.1.B

Corollary 4.1.B

Corollary 4.1.B. Rédei’s Theorem.
Every tournament has a directed Hamilton path.

Proof. Let v1, v2, . . . , vn be a median order of the tournament. By
Theorem 4.1.A(M1), with 1 ≤ i ≤ n − 1 and j = i + 1 we have that
vi , vi+1 is a median order on T [{vi , vi+1}]. But T [{vi , vi+1}] is just an arc
between vi and vi+1, so with vi , vi+1 as a median order then T [{vi , vi+1}]
must consist of arc (vi , vi+1). So P = (v1, v2, . . . , vn) is a directed
Hamilton path from vertex v1 to vertex vn.
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Theorem 4.5

Theorem 4.5

Theorem 4.5. Any tournament on 2k vertices contains a copy of each
branching on k + 1 vertices.

Proof. Let v1, v2, . . . , vk be a median order of a tournament T on 2k
vertices. Let B be any branching on k + 1 vertices (notice that B is not
given as being in T ). Consider the intervals v1, v2, . . . , vi where
1 ≤ i ≤ 2k. We show something slightly more general than the conclusion
of the theorem. We show by induction on k that there is a copy of B in T
(establishing the theorem) with the additional property that the vertex set
of the copy of B includes at least half the vertices in any such interval.

With k = 1, B is a single are between k + 1 = 2 vertices. Consider the
subinterval v1, v2 of the median interval. By Theorem 4.1.A(M1), arc
(v1, v2) is in T and so we take the subgraph of T induced by arc (v1, v2) as
a copy of B and the result holds for k = 1. This establishes the base case.
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Theorem 4.5

Theorem 4.5 (continued 1)

Proof (continued). Now let k ≥ 2 and suppose that the claim holds for
all tournaments on 2(k − 1) vertices and for all B a branching on k
vertices. Let T be a tournament on 2k vertices and let v1, v2, . . . v2k be a
median order of T . Since B is a branching then it has some vertex y of
indegree 1 and outdegree 0 (i.e., B contains the leaf y). Define
B ′ = B − y so that B ′ is a branching on k vertices. Define
T ′ = T [{v1, v2, . . . , v2k−2}] = T − {v2k−1, v2k} so that T ′ is a
tournament on 2k − 2 vertices. By Theorem 2.7.A(M1) (with i = 1 and
j = 2k − 2), v1, v2, . . . , v2k−2 is a median order of T ′. So by the induction
hypothesis there is a copy of B ′ in T ′ whose vertex set includes at least
half of the vertices of any interval of the form v1, v2, . . . , vi where
1 ≤ i ≤ 2k − 2. Let x be the (unique) predecessor of y (the leaf) in B.
Suppose for the sake of notation that x is located at vertex vi∗ of T ′.
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Theorem 4.5

Theorem 4.5 (continued 2)

Proof (continued). In T , by Theorem 4.1.A(M2), vi∗ dominates at least
half of the vertices vi∗+1, vi∗+2, . . . , v2k (a list of 2k − i∗ vertices) so that

vi∗ dominates at least k − 1/2 of the vertices vi∗+1, vi∗+2, . . . , v2k . (∗)

On the other hand, B ′ includes at least (i∗ − 1)/2 of the i∗ − 1 vertices
v1, v2, . . . , vi∗−1 by the induction hypothesis.

B ′ includes at most (k − 1)− (i∗ − 1)/2 = k − (i∗ + 1)/2

of the vertices vi∗+1, vi∗+2, . . . , v2k (∗∗)

(we take k − 1)− (i∗ − 1)/2 since B ′ includes at least (i∗ ≥ 1), so (∗) and
(∗∗) imply that vi∗ dominates some vertex vj where i∗ + 1 ≤ j ≤ 2k where
vj is not in B ′. So add vertex vj to B ′ and add arc (vi∗ , vj) and vertex vj

to B ′ to get a copy of B in tournament T .
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Theorem 4.5

Theorem 4.5 (continued 3)

Proof (continued). We have really just deleted the arc (vi∗ , y) in B to
produce B ′, a copy of which is in T ′ by the induction hypotheses, and the
replaces (vi∗ , y) with arc (vi∗ , vj) in T :

Now let 1 ≤ i ≤ 2k and consider the interval v1, v2, . . . , vi . For
1 ≤ i ≤ j − 1 the copy of B ′ contains at least half of the vertices
v1, v2, . . . , vi and so does B (since the subgraphs induced by the
corresponding vertices of B and B ′ are the same on these vertices).
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Theorem 4.5

Theorem 4.5 (continued 4)

Theorem 4.5. Any tournament on 2k vertices contains a copy of each
branching on k + 1 vertices.

Proof (continued).
For j ≤ i ≤ 2k − 2 the copy of B ′ contains at least half of the vertices in
{v1, v2, . . . , vi} \ {vj} (so at least (i − 1)/2 of these vertices) and so B
contains these plus vertex vj and so B contains at least
(i − 1)/2 + 1 = (1 + 1)/3 ≥ i/2 of {v1, v2, . . . , vi}. When i = 2k − 1 or
i = 2k, again B ′ contains at least (2k − 2)/2 = k − 1 of
{v1, v2, . . . , vi} \ {vj} and so B contains at least (k − 1) + 1 = k of the
vertices {v1, v2, . . . , vi}, as claimed. So by claim holds for any tournament
on 2k vertices and hence, by mathematical induction, holds for all
tournaments on 2k vertices where k ∈ N.
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