## Graph Theory

## Chapter 5. Nonseparable Graphs

5.1. Cut Vertices—Proofs of Theorems


## Table of contents

(1) Theorem 5.1

## Theorem 5.1

Theorem 5.1. A connected graph on three or more vertices has no cut vertices if and only if any two distinct vertices are connected by two internally disjoint paths.

Proof. Suppose $G$ is a connected graph such that any two distinct vertices are connected by two internally disjoint paths. Let $v$ be a vertex of $G$ and consider $G-v$. For any two distinct vertices $x$ and $y$ in $G-v$, there are two internally disjoint paths in $G$ connecting $x$ and $y$. Since vertex $v$ cannot be an internal vertex of both paths, then one of these paths must be in $G-v$. Since $x$ and $y$ are arbitrary vertices in $G-v$, then by Exercise 3.1.4 graph $G-v$ is connected. That is, $v$ is not a cut vertex of $G$. Since $v$ is an arbitrary vertex of graph $G$, then $G$ has no cut vertices, as claimed.

## Theorem 5.1

Theorem 5.1. A connected graph on three or more vertices has no cut vertices if and only if any two distinct vertices are connected by two internally disjoint paths.

Proof. Suppose $G$ is a connected graph such that any two distinct vertices are connected by two internally disjoint paths. Let $v$ be a vertex of $G$ and consider $G-v$. For any two distinct vertices $x$ and $y$ in $G-v$, there are two internally disjoint paths in $G$ connecting $x$ and $y$. Since vertex $v$ cannot be an internal vertex of both paths, then one of these paths must be in $G-v$. Since $x$ and $y$ are arbitrary vertices in $G-v$, then by Exercise 3.1.4 graph $G-v$ is connected. That is, $v$ is not a cut vertex of $G$. Since $v$ is an arbitrary vertex of graph $G$, then $G$ has no cut vertices, as claimed. Now suppose $G$ is a connected graph on three or more vertices that has no cut vertices. Let $u$ and $v$ be two vertices of $G$. We prove by induction on the distance $d(u, v)$ that these vertices are connected by two internally disjoint paths.

## Theorem 5.1

Theorem 5.1. A connected graph on three or more vertices has no cut vertices if and only if any two distinct vertices are connected by two internally disjoint paths.

Proof. Suppose $G$ is a connected graph such that any two distinct vertices are connected by two internally disjoint paths. Let $v$ be a vertex of $G$ and consider $G-v$. For any two distinct vertices $x$ and $y$ in $G-v$, there are two internally disjoint paths in $G$ connecting $x$ and $y$. Since vertex $v$ cannot be an internal vertex of both paths, then one of these paths must be in $G-v$. Since $x$ and $y$ are arbitrary vertices in $G-v$, then by Exercise 3.1.4 graph $G-v$ is connected. That is, $v$ is not a cut vertex of $G$. Since $v$ is an arbitrary vertex of graph $G$, then $G$ has no cut vertices, as claimed. Now suppose $G$ is a connected graph on three or more vertices that has no cut vertices. Let $u$ and $v$ be two vertices of $G$. We prove by induction on the distance $d(u, v)$ that these vertices are connected by two internally disjoint paths.

## Theorem 5.1 (continued 1)

Theorem 5.1. A connected graph on three or more vertices has no cut vertices if and only if any two distinct vertices are connected by two internally disjoint paths.

Proof (continued). First, suppose $u$ and $v$ are adjacent so that
$d(u, v)=1$. Let $e$ be edge $u v$. Since neither $u$ nor $v$ is a cut vertex then, by Exercise 5.1.2, e is not a cut edge. So by Proposition 3.2, edge e lies in a cycle $C$ of $G$. So $u$ and $v$ are connected by the two internally disjoint paths uev and $C \backslash e$, establishing the base case.

## Theorem 5.1 (continued 1)

Theorem 5.1. A connected graph on three or more vertices has no cut vertices if and only if any two distinct vertices are connected by two internally disjoint paths.

Proof (continued). First, suppose $u$ and $v$ are adjacent so that $d(u, v)=1$. Let $e$ be edge $u v$. Since neither $u$ nor $v$ is a cut vertex then, by Exercise 5.1.2, e is not a cut edge. So by Proposition 3.2, edge $e$ lies in a cycle $C$ of $G$. So $u$ and $v$ are connected by the two internally disjoint paths uev and $C \backslash e$, establishing the base case.

Second, suppose the claim holds for any two vertices at a distance less than $k$ where $k \geq 2$. Let $d(u, v)=k$. Consider a $u v$-path of length $k$ and let $v^{\prime}$ be the immediate predecessor of $v$ on this path. Then $d\left(u, v^{\prime}\right)=k-1$ (it cannot be less than this, or else $d(u, v)$ would be less than $k$ ). By the induction hypothesis, $u$ and $v^{\prime}$ are connected by two internally disjoint paths, say $P^{\prime}$ and $Q^{\prime}$ (see Figure 5.2)

## Theorem 5.1 (continued 1)

Theorem 5.1. A connected graph on three or more vertices has no cut vertices if and only if any two distinct vertices are connected by two internally disjoint paths.

Proof (continued). First, suppose $u$ and $v$ are adjacent so that $d(u, v)=1$. Let $e$ be edge $u v$. Since neither $u$ nor $v$ is a cut vertex then, by Exercise 5.1.2, e is not a cut edge. So by Proposition 3.2, edge $e$ lies in a cycle $C$ of $G$. So $u$ and $v$ are connected by the two internally disjoint paths uev and $C \backslash e$, establishing the base case.

Second, suppose the claim holds for any two vertices at a distance less than $k$ where $k \geq 2$. Let $d(u, v)=k$. Consider a $u v$-path of length $k$ and let $v^{\prime}$ be the immediate predecessor of $v$ on this path. Then $d\left(u, v^{\prime}\right)=k-1$ (it cannot be less than this, or else $d(u, v)$ would be less than $k$ ). By the induction hypothesis, $u$ and $v^{\prime}$ are connected by two internally disjoint paths, say $P^{\prime}$ and $Q^{\prime}$ (see Figure 5.2).

## Theorem 5.1 (continued 2)

## Proof (continued).



Because $G$ has no cut vertices by hypothesis, then $G-v^{\prime}$ is connected and therefore contains a $u v$-path, say $R^{\prime}$ (by Exercise 3.1.4). Now path $R^{\prime}$ meets $P^{\prime} \cup Q^{\prime}$ in possibly several points, but $R^{\prime}$ definitely meets $P^{\prime} \cup Q^{\prime}$ at vertex $u$. Let $x$ be the last vertex of $R^{\prime}$ at which $R^{\prime}$ meets $P^{\prime} \cup Q^{\prime}$. Without loss of generality (for the sake of notation), say $x$ lies on $P^{\prime}$. Define paths $P=u P^{\prime} x R^{\prime} v$ and $Q=u Q^{\prime} v^{\prime} v$. Then $P$ and $Q$ are internally disjoint $u v$-paths in $G$. So, by induction, for any two distinct vertices in $G$ (say the distance between these vertices is $n \in \mathbb{N}$ ) there are two internally disjoint paths joining the two vertices, as claimed.

## Theorem 5.1 (continued 2)

## Proof (continued).



Because $G$ has no cut vertices by hypothesis, then $G-v^{\prime}$ is connected and therefore contains a $u v$-path, say $R^{\prime}$ (by Exercise 3.1.4). Now path $R^{\prime}$ meets $P^{\prime} \cup Q^{\prime}$ in possibly several points, but $R^{\prime}$ definitely meets $P^{\prime} \cup Q^{\prime}$ at vertex $u$. Let $x$ be the last vertex of $R^{\prime}$ at which $R^{\prime}$ meets $P^{\prime} \cup Q^{\prime}$. Without loss of generality (for the sake of notation), say $x$ lies on $P^{\prime}$. Define paths $P=u P^{\prime} x R^{\prime} v$ and $Q=u Q^{\prime} v^{\prime} v$. Then $P$ and $Q$ are internally disjoint $u v$-paths in $G$. So, by induction, for any two distinct vertices in $G$ (say the distance between these vertices is $n \in \mathbb{N}$ ) there are two internally disjoint paths joining the two vertices, as claimed.

