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Theorem 5.2

Theorem 5.2

Theorem 5.2. A connected graph is nonseparable if and only if any two
of its edges lie on a common cycle.

Proof. Suppose G is not nonseparable; that is, suppose G is separable.
Then G can be decomposed into two nonempty connected subgraphs G1

and G2 which have just one vertex v in common. Let ei be an edge of Gi

incident with v , for i ∈ {1, 2}.
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Theorem 5.2

Theorem 5.2 (continued 1)

Theorem 5.2. A connected graph is nonseparable if and only if any two
of its edges lie on a common cycle.

Proof (continued). If either e1 or e2 is a loop then there is no cycle
including both e1 and e2 (remember, a loop is a cycle of length 1). If
neither e1 nor e2 is a loop then v is a cut vertex of G (here, the
components of G − v determine the decomposition of G required in the
definition of “separation”). Let vi be the other end of ei for i ∈ {1, 2}.
Then there is no v1v2-path in G − v (since v is a cut vertex). So there is
no cycle in G containing the two edges e1 and e2 (or else the cycle minus
vertex v would be a v1v2-path). The contrapositive of what we have
shown is: If any two edges lie on a common cycle then the connected
graph is nonseparable.
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Theorem 5.2

Theorem 5.2 (continued 2)

Theorem 5.2. A connected graph is nonseparable if and only if any two
of its edges lie on a common cycle.

Proof (continued). Now suppose that G is nonseparable. Let e1 and e2

be two edges of G . Subdivide ei by a new vertex vi for i ∈ {1, 2}
producing graph H (we create H by subdividing edges of G to insure that
H has at least three vertices; we’ll apply Theorem 5.1 to H and at least
three vertices are required). By Exercise 5.2.1, since G is nonseparable
then so is H. Since every cut vertex of a graph is a separating vertex and
H is nonseparable, then H has no cut vertices.
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Theorem 5.2

Theorem 5.2 (continued 3)

Theorem 5.2. A connected graph is nonseparable if and only if any two
of its edges lie on a common cycle.

Proof (continued).

Then by Theorem 5.1 there are two internally disjoint v1v2-paths in H.
These two paths form a cycle in H which contains v1 and v2. Now identify
vi with one end of ei for i ∈ {1, 2} in the cycle. This gives a cycle in G
that contains edges e1 and e2. Since e1 and e2 are arbitrary edges of G ,
we have shown that if G is nonseparable then any two edges of G lie on a
common cycle.
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Proposition 5.3

Proposition 5.3. Let G be a graph. Then:

(a) any two blocks of G have at most one vertex in common,

(b) the blocks of G form a (edge) decomposition of G ,

(c) each cycle of G is contained in a block of G .

Proof. (a) ASSUME there are distinct blocks B1 and B2 of G with at
least two common vertices. By Note 5.2.B, B1 and B2 are necessarily
loopless. Because they are distinct maximal nonseparable subgraphs of G ,
neither one contains the other. Hence B = B1 ∪ B2 properly contains both
B1 and B2.

Let v ∈ V (B). Then B − v = (B1 − v) ∪ (B2 − v) is
connected because B1 − v and B2 − v are both connected (since B1 and
B2 are blocks, then they are by definition nonseparable and so v is not a
separating vertex and hence is not a cut vertex) and B1 − v and B2 − v
have at least one common vertex by our assumption.
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Proposition 5.3

Proposition 5.3 (continued 1)

Proposition 5.3. Let G be a graph. Then:

(a) any two blocks of G have at most one vertex in common,

(b) the blocks of G form a (edge) decomposition of G ,

(c) each cycle of G is contained in a block of G .

Proof (continued). Since B1 and B2 are blocks, no vertex of Bi is a cut
vertex of Bi for i ∈ {1, 2} (as just described) and hence no vertex of B is a
cut vertex of B. So B is a loopless connected graph with no cut vertices
(and hence, by Note 5.2.A, no separating vertices) so that B is
nonseparable. But this CONTRADICTS the fact that blocks B1 and B2

are maximal nonseparable graphs. So the assumption that B1 and B2 have
two common vertices is false. So two blocks of G have at most one vertex
in common, as claimed.
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Proposition 5.3

Proposition 5.3 (continued 2)

Proposition 5.3. Let G be a graph. Then:

(b) the blocks of G form a (edge) decomposition of G ,

(c) each cycle of G is contained in a block of G .

Proof (continued). (b) Each edge of G induces a nonseparable subgraph
of G (either a loop on one vertex or a K2 on two vertices). So each edge
of G is contained in some maximal nonseparable subgraph of G ; that is,
each edge of G is contained in some block of G . So the union of the (edge
sets of the) blocks of G gives (the edge set of) G itself (so the blocks
form a cover of G ).

By part (a), no two blocks can have two vertices in
common so no two blocks can share a (nonloop) edge. If G has loops,
then each single loop is a block and so distinct blocks cannot share a loop.
So the blocks are edge (and loop) disjoint so that the blocks form a (edge)
decomposition of G , as claimed.
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Proposition 5.3

Proposition 5.3 (continued 3)

Proposition 5.3. Let G be a graph. Then:

(c) each cycle of G is contained in a block of G .

Proof (continued). (c) A cycle of G is a nonseparable subgraph of G (by
Theorem 5.2, say), and so is contained in some maximal nonseparable
subgraph of G . That is, each cycle is contained in a block of G , as
claimed.
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Theorem 5.4. The Splitting Lemma

Theorem 5.4

Theorem 5.4. The Splitting Lemma.
Let G be a nonseparable graph and let v be a vertex of G of degree at
least four with at least two distinct neighbors. Then some two nonparallel
edges incident to v can be split off so that the resulting graph is
connected and has no cut edges.

Proof. Since G is nonseparable then it has no loops. There are two graphs
on 3 vertices and 5 edges which satisfy the hypotheses of the lemma:

As can be seen here, these graphs satisfy the conclusion of the Splitting
Lemma.
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Theorem 5.4. The Splitting Lemma

Theorem 5.4 (continued 1)

Proof (continued). Let f be an edge of G not incident to vertex v and
set H = G \ f . If v is an internal vertex of some block of H, then the
result follows by induction on the number of edges of the block, as is to be
shown in Exercise 5.2.A. So we consider the case where v is not an
interval vertex of a block of H; that is, we let v be a separating vertex of
H (and hence a cut vertex of H, by Note 5.2.A). Since G is nonseparable
by hypothesis, by Exercise 5.2.11 we have that the block tree of H = G \ f
is a path. Since G is nonseparable (and hence has no cut vertices) then f
must link internal vertices of the two end blocks of H (otherwise G would
have cut vertices):

Figure 5.2(a) The block path H and the edge f
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Theorem 5.4. The Splitting Lemma

Theorem 5.4 (continued 2)

Proof (continued). Let e1 and e2 be two edges incident with v which lie
in distinct blocks of H (such edges exist since the block tree of H is a path,
so there is a block of H “to the left of v” and a block of H “to the right
of v”). Consider the graph G ′ derived from G by spitting off e1 and e2,
shown below in Figure 5.2(b). In Exercise 5.2.9 it is to be shown that G ′ is
connected and that each edge of G ′ lies in a cycle. Then by Proposition
3.2, G ′ has no cut edges. Then edges e1 and e2 are the nonparallel edges
of G claimed to exist and G ′ is the graph in which these edges have been
split off, and G ′ is connected and has no cut edges, as claimed.
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Theorem 5.5

Theorem 5.5

Theorem 5.5. The Cycle Double Cover Conjecture is true if and only if it
is true for all nonseparable cubic graphs.

Proof. As observed above, Proposition 5.3(b and c) a graph has a cycle
double cover if and only if each of its blocks has a cycle double cover. So
it suffices to consider the Cycle Double Cover Conjecture for blocks (i.e.,
nonseparable graphs). Let G be a nonseparable graph (so G has no loops
by Note 5.2.B).

By Veblen’s Theorem (Theorem 2.7), if G is even then it
admits a cycle decomposition and hence it has a cycle double cover (just
take two copies of the cycle decomposition). So without loss of generality,
we may assume that G has at least one vertex of odd degree. We now
consider two “manipulations” of a nonseparable graph.
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Theorem 5.5

Theorem 5.5 (continued 1)

Proof (continued).
Manipulation 1. Suppose G has a vertex v of degree 2 with distinct
neighbors u and w (if v is degree two and neighbors u and w are equal
then u = w is a cut vertex, so since G is nonseparable, this cannot be the
case). Let G ′ be the graph obtained from G − v by adding a new edge
joining u and w (notice that this is not splitting off the edges uv and vw
since vertex v is deleted here; this is the inverse operation of subdividing
an edge). Since G is nonseparable then it contains no loops (by Note
5.2.B) and no cut vertices. Notice that G ′ also contains no loops (u and
w are distinct) and no cut vertices (a vertex of G ′ would also be a cut
vertex of G ). That is, G ′ is nonseparable.

Manipulation 2. If G has a vertex v of degree 4 or more, let G ′ be the
graph obtained from G by splitting off two edges incident to v . As in
Manipulation 1, G ′ is nonseparable.
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Theorem 5.5

Theorem 5.5 (continued 2)

Proof (continued). In Manipulation 1, a vertex of degree 2 is eliminated
and all other vertices remain the same degree. In Manipulation 2, a vertex
of degree 4 or greater is modified in such a way that its degree is reduced
by 2 and the degrees of all other vertices remain the same. In the
application of either Manipulation, a nonseparable graph is produced.
Notice that a nonseparable graph cannot have a vertex of degree 1 (a
pendant edge would represent a bong of a graph and so a nonseparable
graph cannot have a pendant edge). So by repeatedly applying
Manipulations 1 and 2, a nonseparable cubic graph H is produced (since G
has at least one vertex of odd degree, repeatedly applying the
Manipulations does not result in the null graph). A cycle double cover of
H can then be used to produce a cycle double cover of G and conversely,
as claimed. This last claim is illustrated below.
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Theorem 5.5 (continued 3)

Proof (continued).
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