Graph Theory

Chapter 6. Tree-Search Algorithms

6.1. Tree-Search—Proofs of Theorems

Table of contents

(1) Theorem 6.2
(2) Theorem 6.3
(3) Proposition 6.5
4) Proposition 6.6

Theorem 6.2

Theorem 6.2. Let T be a BFS-tree of a connected graph G, with root r. Then:
(a) for every vertex v of $G, \ell(v)=d_{T}(r, v)$, the level of v in T, and
(b) every edge of G joins vertices on the same or consecutive levels of T; that is, $|\ell(u)-\ell(v)| \leq 1$ for all $u v \in E$.

Proof. (a) This is to be proved (inductively) in Exercise 6.1.1.

Theorem 6.2

Theorem 6.2. Let T be a BFS-tree of a connected graph G, with root r. Then:
(a) for every vertex v of $G, \ell(v)=d_{T}(r, v)$, the level of v in T, and
(b) every edge of G joins vertices on the same or consecutive levels of T; that is, $|\ell(u)-\ell(v)| \leq 1$ for all $u v \in E$.

Proof. (a) This is to be proved (inductively) in Exercise 6.1.1.
(b) If $u v$ is and edge of G joining u and v on the same level, then by the definition of "level," $\ell(u)=\ell(v)$ as claimed. So it suffices to prove that if $u v \in E$ and $\ell(u)<\ell(v)$ then $\ell(u(=\ell(v)-1$.

Theorem 6.2

Theorem 6.2. Let T be a BFS-tree of a connected graph G, with root r. Then:
(a) for every vertex v of $G, \ell(v)=d_{T}(r, v)$, the level of v in T, and
(b) every edge of G joins vertices on the same or consecutive levels of T; that is, $|\ell(u)-\ell(v)| \leq 1$ for all $u v \in E$.

Proof. (a) This is to be proved (inductively) in Exercise 6.1.1.
(b) If $u v$ is and edge of G joining u and v on the same level, then by the definition of "level," $\ell(u)=\ell(v)$ as claimed. So it suffices to prove that if $u v \in E$ and $\ell(u)<\ell(v)$ then $\ell(u(=\ell(v)-1$.
First, we prove by induction on $\ell(u)$ that if u and v satisfy $\ell(u)<\ell(v)$, then u is joined to A "before" (in terms of the values of $t(u)$ and $t(v)$) For the base case, if $\ell(u)=0$ then $u=r$ is the root of the tree, $t(u)=1$, and for every other vertex $i>1$ (by Step 9) and so every other vertex v satisfies $t(v)>1$ (by Step 11)

Theorem 6.2

Theorem 6.2. Let T be a BFS-tree of a connected graph G, with root r. Then:
(a) for every vertex v of $G, \ell(v)=d_{T}(r, v)$, the level of v in T, and
(b) every edge of G joins vertices on the same or consecutive levels of T; that is, $|\ell(u)-\ell(v)| \leq 1$ for all $u v \in E$.

Proof. (a) This is to be proved (inductively) in Exercise 6.1.1.
(b) If $u v$ is and edge of G joining u and v on the same level, then by the definition of "level," $\ell(u)=\ell(v)$ as claimed. So it suffices to prove that if $u v \in E$ and $\ell(u)<\ell(v)$ then $\ell(u(=\ell(v)-1$.
First, we prove by induction on $\ell(u)$ that if u and v satisfy $\ell(u)<\ell(v)$, then u is joined to A "before" (in terms of the values of $t(u)$ and $t(v)$). For the base case, if $\ell(u)=0$ then $u=r$ is the root of the tree, $t(u)=1$, and for every other vertex $i>1$ (by Step 9) and so every other vertex v satisfies $t(v)>1$ (by Step 11).

Theorem 6.2 (continued 1)

Proof (continued). For the induction hypothesis, suppose that the assertion is true whenever $\ell(u)<k$, and consider the case $\ell(u)=k$ where $k>0$. Notice that $0<k=\ell(u)<\ell(v)$ so that neither u nor v is the root. Use the predecessor function p to define $x=p(u)$ and $y=p(v)$.
Since predecessors in a rooted tree are unique, then $x \neq y$. By Step 11 we have $\ell(x)=\ell(u)-1$ (with y of Step 11 equal to u here) and $\ell(y)=\ell(v)-1$ (with x and y of Step 11 equal to y and v, respectively, here). Since we consider $\ell(u)<\ell(v)$, then we have
and so by the induction hypothesis we have that x joined Q before y (i.e., $t(x)<t(y)$). Since u is a neighbor of x in T (by the predecessor function) and $u \neq v$ then u joined Q before v (i.e., $t(u)<t(v))$. Therefore, by mathematical induction, if $\ell(u)<\ell(v)$ then u joined Q before v.

Theorem 6.2 (continued 1)

Proof (continued). For the induction hypothesis, suppose that the assertion is true whenever $\ell(u)<k$, and consider the case $\ell(u)=k$ where $k>0$. Notice that $0<k=\ell(u)<\ell(v)$ so that neither u nor v is the root. Use the predecessor function p to define $x=p(u)$ and $y=p(v)$.
Since predecessors in a rooted tree are unique, then $x \neq y$. By Step 11 we have $\ell(x)=\ell(u)-1$ (with y of Step 11 equal to u here) and $\ell(y)=\ell(v)-1$ (with x and y of Step 11 equal to y and v, respectively, here). Since we consider $\ell(u)<\ell(v)$, then we have $\ell(x)=\ell(u)-1<\ell(v)-1-\ell(y)$. Since $\ell(u)=k$ then $\ell(x)=k-1<k$ and so by the induction hypothesis we have that x joined Q before y (i.e., $t(x)<t(y)$). Since u is a neighbor of x in T (by the predecessor function) and $u \neq v$ then u joined Q before v (i.e., $t(u)<t(v)$). Therefore, by mathematical induction, if $\ell(u)<\ell(v)$ then u joined Q before v.

Theorem 6.2 (continued 2)

Proof (continued). Now consider $u v \in E$ with $\ell(u)<\ell(v)$. (i) If $u=p(v)$, then by Step 11 we have $\ell(u)=\ell(v)-1$ (with x and y of Step 11 equal to u and v, respectively, here), and the claim follows. (ii) If $u \neq p(v)$ then set $y=p(v)$. Then v was added to T by the edge $y v$ (by Steps 11 and 12) and not by the edge $u v$. So vertex y joined Q before u, for if u had joined Q before y (and hence before v), then the fact that v is a neighbor of u means that v would have joined Q before y by Step 8 (with v as an uncoloured neighbor of u) and Step 12 (with y there equal to v here), contradicting the fact that y is a predecessor of v. So by the first part of the proof of $(b), \ell(y) \leq \ell(u)$.

Theorem 6.2 (continued 2)

Proof (continued). Now consider $u v \in E$ with $\ell(u)<\ell(v)$. (i) If $u=p(v)$, then by Step 11 we have $\ell(u)=\ell(v)-1$ (with x and y of Step 11 equal to u and v, respectively, here), and the claim follows. (ii) If $u \neq p(v)$ then set $y=p(v)$. Then v was added to T by the edge $y v$ (by Steps 11 and 12) and not by the edge $u v$. So vertex y joined Q before u, for if u had joined Q before y (and hence before v), then the fact that v is a neighbor of u means that v would have joined Q before y by Step 8 (with v as an uncoloured neighbor of u) and Step 12 (with y there equal to v here), contradicting the fact that y is a predecessor of v. So by the first part of the proof of $(b), \ell(y) \leq \ell(u)$. Since $y=p(v)$ then $\ell(v)-1=\ell(y)$ (by Step 11) and since we are considering edge $u v \in E$ with $\ell(u)<\ell(v)$ (and hence $\ell(u) \leq \ell(v)-1$ since ℓ is integer valued), then we have $\ell(v)-1=\ell(y) \leq \ell(u) \leq \ell(v)-1$. This gives $\ell(u)=\ell(v)-1$, as claimed.

Theorem 6.2 (continued 2)

Proof (continued). Now consider $u v \in E$ with $\ell(u)<\ell(v)$. (i) If $u=p(v)$, then by Step 11 we have $\ell(u)=\ell(v)-1$ (with x and y of Step 11 equal to u and v, respectively, here), and the claim follows. (ii) If $u \neq p(v)$ then set $y=p(v)$. Then v was added to T by the edge $y v$ (by Steps 11 and 12) and not by the edge $u v$. So vertex y joined Q before u, for if u had joined Q before y (and hence before v), then the fact that v is a neighbor of u means that v would have joined Q before y by Step 8 (with v as an uncoloured neighbor of u) and Step 12 (with y there equal to v here), contradicting the fact that y is a predecessor of v. So by the first part of the proof of $(\mathrm{b}), \ell(y) \leq \ell(u)$. Since $y=p(v)$ then $\ell(v)-1=\ell(y)$ (by Step 11) and since we are considering edge $u v \in E$ with $\ell(u)<\ell(v)$ (and hence $\ell(u) \leq \ell(v)-1$ since ℓ is integer valued), then we have $\ell(v)-1=\ell(y) \leq \ell(u) \leq \ell(v)-1$. This gives $\ell(u)=\ell(v)-1$, as claimed. So for $u v$ an edge of G, we have either $\ell(u)=\ell(v)$ (when u and v are at the same level) or $\ell(u)=\ell(v)-1$ in the case that $\ell(u)<\ell(v)$. That is,

Theorem 6.2 (continued 2)

Proof (continued). Now consider $u v \in E$ with $\ell(u)<\ell(v)$. (i) If $u=p(v)$, then by Step 11 we have $\ell(u)=\ell(v)-1$ (with x and y of Step 11 equal to u and v, respectively, here), and the claim follows. (ii) If $u \neq p(v)$ then set $y=p(v)$. Then v was added to T by the edge $y v$ (by Steps 11 and 12) and not by the edge $u v$. So vertex y joined Q before u, for if u had joined Q before y (and hence before v), then the fact that v is a neighbor of u means that v would have joined Q before y by Step 8 (with v as an uncoloured neighbor of u) and Step 12 (with y there equal to v here), contradicting the fact that y is a predecessor of v. So by the first part of the proof of $(\mathrm{b}), \ell(y) \leq \ell(u)$. Since $y=p(v)$ then $\ell(v)-1=\ell(y)$ (by Step 11) and since we are considering edge $u v \in E$ with $\ell(u)<\ell(v)$ (and hence $\ell(u) \leq \ell(v)-1$ since ℓ is integer valued), then we have $\ell(v)-1=\ell(y) \leq \ell(u) \leq \ell(v)-1$. This gives $\ell(u)=\ell(v)-1$, as claimed. So for $u v$ an edge of G, we have either $\ell(u)=\ell(v)$ (when u and v are at the same level) or $\ell(u)=\ell(v)-1$ in the case that $\ell(u)<\ell(v)$. That is, $|\ell(u)-\ell(v)| \leq 1$ for all $u v \in E$.

Theorem 6.3

Theorem 6.3. Let G be a connected graph. Then the values of the level function ℓ returned by BFS are the distances in G from the root r : $\ell(v)=d_{G}(r, v)$ for all $v \in V$.

Proof. By Theorem 6.2(a), $\ell(v)=d_{T}(r, v)$. Now $d_{T}(r, v) \geq d_{G}(r, v)$ because T is a subgraph of G. Thus $\ell(v) \geq d_{G}(r, v)$. We now reverse this inequality by an induction argument on the length of the shortest (r, v)-path in G.

Theorem 6.3

Theorem 6.3. Let G be a connected graph. Then the values of the level function ℓ returned by BFS are the distances in G from the root r : $\ell(v)=d_{G}(r, v)$ for all $v \in V$.

Proof. By Theorem 6.2(a), $\ell(v)=d_{T}(r, v)$. Now $d_{T}(r, v) \geq d_{G}(r, v)$ because T is a subgraph of G. Thus $\ell(v) \geq d_{G}(r, v)$. We now reverse this inequality by an induction argument on the length of the shortest (r, v)-path in G.

Let P be a shortest (r, v)-path in G, where $r \neq v$. If P is of length 1 then v is adjacent to r in G. By Steps 3 through 12, the root r is first added to Q and then all neighbors of r are added to T at level 1. This establishes the base case for the induction argument. Now, for the induction hypothesis, suppose the inequality $\ell(v) \leq d_{G}(r, v)$ holds for shortest (r, v)-path P in G of length k. Consider vertex v in G such that the shortest (r, v)-path P in G is of length $k+1$. Let u be the predecessor of v on P (not to be confused with the predecessor $p(v)$ in T)

Theorem 6.3

Theorem 6.3. Let G be a connected graph. Then the values of the level function ℓ returned by BFS are the distances in G from the root r : $\ell(v)=d_{G}(r, v)$ for all $v \in V$.

Proof. By Theorem 6.2(a), $\ell(v)=d_{T}(r, v)$. Now $d_{T}(r, v) \geq d_{G}(r, v)$ because T is a subgraph of G. Thus $\ell(v) \geq d_{G}(r, v)$. We now reverse this inequality by an induction argument on the length of the shortest (r, v)-path in G.

Let P be a shortest (r, v)-path in G, where $r \neq v$. If P is of length 1 then v is adjacent to r in G. By Steps 3 through 12, the root r is first added to Q and then all neighbors of r are added to T at level 1. This establishes the base case for the induction argument. Now, for the induction hypothesis, suppose the inequality $\ell(v) \leq d_{G}(r, v)$ holds for shortest (r, v)-path P in G of length k. Consider vertex v in G such that the shortest (r, v)-path P in G is of length $k+1$. Let u be the predecessor of v on P (not to be confused with the predecessor $p(v)$ in T).

Theorem 6.3 (continued)

Theorem 6.3. Let G be a connected graph. Then the values of the level function ℓ returned by BFS are the distances in G from the root r : $\ell(v)=d_{G}(r, v)$ for all $v \in V$.

Proof (continued). Then $r P u$ is a shortest (r, u)-path in G, and $d_{G}(r, u)=d_{G}(r, v)=1=k$. So by the induction hypothesis, $\ell(u) \leq d_{G}(r, u)$. Since u and v are adjacent in G, then by Theorem 6.2(b) we have $\ell(v)-\ell(u) \leq 1$. Therefore $\ell(v) \leq \ell(u)+1 \leq d_{G}(r, u)+1=d_{G}(r, v)$.

So the induction step holds and by mathematical induction $\ell(v) \leq d_{G}(r, v)$ for all vertices v in G. Combining this with the first inequality gives the desired equality.

Proposition 6.5

Proposition 6.5. Let u and v be two vertices of G, with $f(u)<f(v)$.
(a) If u and v are adjacent in G, then $I(u)<I(v)$.
(b) u is an ancestor of v in T if and only if $I(v)<I(u)$.

Proof. (a) Informally, this claim is that if u is added to the top of stack S before its neighbor v (i.e., $f(u)<f(v)$), then v leaves the stack before u (i.e., $I(u)<I(v)$). By Steps 12 and $13, u$ is added to stack S at time $f(u)$. By Steps 10-13, all uncolored neighbors are considered for addition to S before vertex u is removed from S. Parameter i is incremented by 1 in Step 9 after each uncolored neighbor of u is considered for addition to S.

Proposition 6.5

Proposition 6.5. Let u and v be two vertices of G, with $f(u)<f(v)$.
(a) If u and v are adjacent in G, then $I(u)<I(v)$.
(b) u is an ancestor of v in T if and only if $I(v)<I(u)$.

Proof. (a) Informally, this claim is that if u is added to the top of stack S before its neighbor v (i.e., $f(u)<f(v)$), then v leaves the stack before u (i.e., $I(u)<I(v)$). By Steps 12 and $13, u$ is added to stack S at time $f(u)$. By Steps 10-13, all uncolored neighbors are considered for addition to S before vertex u is removed from S. Parameter i is incremented by 1 in Step 9 after each uncolored neighbor of u is considered for addition to S. Since $f(u)<f(v)$ then v is one of these neighbors of u. So v is added to the top of stack S while u is still in S. Since vertices are removed from the top of S (by Steps 8 and 16), and i is incremented by 1 each time a vertex is removed from the stack (by Step 9), so the I value of v (assigned in Step 15) is less than the I value of $u, I(v)<I(u)$, as claimed.

Proposition 6.5

Proposition 6.5. Let u and v be two vertices of G, with $f(u)<f(v)$.
(a) If u and v are adjacent in G, then $I(u)<I(v)$.
(b) u is an ancestor of v in T if and only if $I(v)<I(u)$.

Proof. (a) Informally, this claim is that if u is added to the top of stack S before its neighbor v (i.e., $f(u)<f(v)$), then v leaves the stack before u (i.e., $I(u)<I(v)$). By Steps 12 and $13, u$ is added to stack S at time $f(u)$. By Steps 10-13, all uncolored neighbors are considered for addition to S before vertex u is removed from S. Parameter i is incremented by 1 in Step 9 after each uncolored neighbor of u is considered for addition to S. Since $f(u)<f(v)$ then v is one of these neighbors of u. So v is added to the top of stack S while u is still in S. Since vertices are removed from the top of S (by Steps 8 and 16), and i is incremented by 1 each time a vertex is removed from the stack (by Step 9), so the I value of v (assigned in Step 15) is less than the I value of $u, I(v)<I(u)$, as claimed.

Proposition 6.5 (continued 1)

Proposition 6.5. Let u and v be two vertices of G, with $f(u)<f(v)$.
(a) If u and v are adjacent in G, then $I(u)<I(v)$.
(b) u is an ancestor of v in T if and only if $I(v)<I(u)$.

Proof (continued). (b) First, suppose that u is an ancestor of v in T. By Steps 9 and 12, the values of f increase along the path $u T v$ (i is incremented in Step 9 and f values are assigned to vertices using the value of i and the predecessor function in Step 12). That is, $f(u)<f(v)$. So by part (a) to each vertex in path $u T v$ we have $I\left(u_{<} I(v)\right.$ (we have to apply to consecutive vertices in the path since part (a) requires that we compare neighbors), as claimed.

Conversely, suppose that u is not an ancestor of v in T. Since $f(u)<f(v)$ by hypothesis then v is not an ancestor of u wither, it could lie on another "branch" of the family tree). So u does not lie on the path $r T v$ and v does not lie on the path rTu. Let s be the last common vertex of these two paths.

Proposition 6.5 (continued 1)

Proposition 6.5. Let u and v be two vertices of G, with $f(u)<f(v)$.
(a) If u and v are adjacent in G, then $I(u)<I(v)$.
(b) u is an ancestor of v in T if and only if $I(v)<I(u)$.

Proof (continued). (b) First, suppose that u is an ancestor of v in T. By Steps 9 and 12, the values of f increase along the path $u T v$ (i is incremented in Step 9 and f values are assigned to vertices using the value of i and the predecessor function in Step 12). That is, $f(u)<f(v)$. So by part (a) to each vertex in path $u T v$ we have $I\left(u_{<} I(v)\right.$ (we have to apply to consecutive vertices in the path since part (a) requires that we compare neighbors), as claimed.

Conversely, suppose that u is not an ancestor of v in T. Since $f(u)<f(v)$ by hypothesis then v is not an ancestor of u wither, it could lie on another "branch" of the family tree). So u does not lie on the path $r T v$ and v does not lie on the path $r T u$. Let s be the last common vertex of these two paths.

Proposition 6.5 (continued 2)

Proposition 6.5. Let u and v be two vertices of G, with $f(u)<f(v)$.
(a) If u and v are adjacent in G, then $I(u)<I(v)$.
(b) u is an ancestor of v in T if and only if $I(v)<I(u)$.

Proof (continued). Since $f(u)<f(v)$ then u was added to stack S before v, and hence all the proper descendants of s on path $r T v$ can be added to S only after all the proper descendants of s on the path $r T u$ have been added and removed from S (after which s is the top vertex). In particular, v can only be added to S (at time $f(v)$) after u has been removed (at time $I(u)$), so that $I(u)<f(v)$. Since v is added to S before it is removed then $f(v)<I(v)$. Therefore $I(u)<f(v)<I(v)$. So if u is not an ancestor of v in T then $I(u)<I(v)$. Since $u \neq v$ then $I(u) \neq I(v)$, so the contrapositive of what we have shown is that if $I(u) \geq I(v)$ (that is, if $I(v)<I(u))$ then u is an ancestor of v in T, as claimed.

Proposition 6.5 (continued 2)

Proposition 6.5. Let u and v be two vertices of G, with $f(u)<f(v)$.
(a) If u and v are adjacent in G, then $I(u)<I(v)$.
(b) u is an ancestor of v in T if and only if $I(v)<I(u)$.

Proof (continued). Since $f(u)<f(v)$ then u was added to stack S before v, and hence all the proper descendants of s on path $r T v$ can be added to S only after all the proper descendants of s on the path $r T u$ have been added and removed from S (after which s is the top vertex). In particular, v can only be added to S (at time $f(v)$) after u has been removed (at time $I(u)$), so that $I(u)<f(v)$. Since v is added to S before it is removed then $f(v)<I(v)$. Therefore $I(u)<f(v)<I(v)$. So if u is not an ancestor of v in T then $I(u)<I(v)$. Since $u \neq v$ then $I(u) \neq I(v)$, so the contrapositive of what we have shown is that if $I(u) \geq I(v)$ (that is, if $I(v)<I(u))$ then u is an ancestor of v in T, as claimed.

Proposition 6.6

Proposition 6.6. Let T be a DFS-tree of a graph G. Then every edge of G joins vertices which are related in T.

Proof. Let $u v$ be any edge of G. Without loss of generality, say $f(u)<f(v)$. By Proposition 6.5(a) we have $I(v)<I(u)$. By Proposition $6.5(b), u$ is an ancestor of v and so (by definition) u and v are related in T.

Proposition 6.6

Proposition 6.6. Let T be a DFS-tree of a graph G. Then every edge of G joins vertices which are related in T.

Proof. Let $u v$ be any edge of G. Without loss of generality, say $f(u)<f(v)$. By Proposition 6.5(a) we have $I(v)<I(u)$. By Proposition $6.5(\mathrm{~b}), u$ is an ancestor of v and so (by definition) u and v are related in T.

