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Theorem 6.2

Theorem 6.2

Theorem 6.2. Let T be a BFS-tree of a connected graph G , with root r .
Then:

(a) for every vertex v of G , `(v) = dT (r , v), the level of v in T ,
and

(b) every edge of G joins vertices on the same or consecutive
levels of T ; that is, |`(u)− `(v)| ≤ 1 for all uv ∈ E .

Proof. (a) This is to be proved (inductively) in Exercise 6.1.1.

(b) If uv is and edge of G joining u and v on the same level, then by the
definition of “level,” `(u) = `(v) as claimed. So it suffices to prove that if
uv ∈ E and `(u) < `(v) then `(u(= `(v)− 1.

First, we prove by induction on `(u) that if u and v satisfy `(u) < `(v),
then u is joined to A “before” (in terms of the values of t(u) and t(v)).
For the base case, if `(u) = 0 then u = r is the root of the tree, t(u) = 1,
and for every other vertex i > 1 (by Step 9) and so every other vertex v
satisfies t(v) > 1 (by Step 11).
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Theorem 6.2

Theorem 6.2 (continued 1)

Proof (continued). For the induction hypothesis, suppose that the
assertion is true whenever `(u) < k, and consider the case `(u) = k where
k > 0. Notice that 0 < k = `(u) < `(v) so that neither u nor v is the
root. Use the predecessor function p to define x = p(u) and y = p(v).
Since predecessors in a rooted tree are unique, then x 6= y . By Step 11 we
have `(x) = `(u)− 1 (with y of Step 11 equal to u here) and
`(y) = `(v)− 1 (with x and y of Step 11 equal to y and v , respectively,
here). Since we consider `(u) < `(v), then we have
`(x) = `(u)− 1 < `(v)− 1− `(y). Since `(u) = k then `(x) = k − 1 < k
and so by the induction hypothesis we have that x joined Q before y (i.e.,
t(x) < t(y)). Since u is a neighbor of x in T (by the predecessor function)
and u 6= v then u joined Q before v (i.e., t(u) < t(v)). Therefore, by
mathematical induction, if `(u) < `(v) then u joined Q before v .
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Theorem 6.2

Theorem 6.2 (continued 2)

Proof (continued). Now consider uv ∈ E with `(u) < `(v). (i) If
u = p(v), then by Step 11 we have `(u) = `(v)− 1 (with x and y of Step
11 equal to u and v , respectively, here), and the claim follows. (ii) If
u 6= p(v) then set y = p(v). Then v was added to T by the edge yv (by
Steps 11 and 12) and not by the edge uv . So vertex y joined Q before u,
for if u had joined Q before y (and hence before v), then the fact that v is
a neighbor of u means that v would have joined Q before y by Step 8
(with v as an uncoloured neighbor of u) and Step 12 (with y there equal to
v here), contradicting the fact that y is a predecessor of v . So by the first
part of the proof of (b), `(y) ≤ `(u).

Since y = p(v) then `(v)− 1 = `(y)
(by Step 11) and since we are considering edge uv ∈ E with `(u) < `(v)
(and hence `(u) ≤ `(v)− 1 since ` is integer valued), then we have
`(v)− 1 = `(y) ≤ `(u) ≤ `(v)− 1. This gives `(u) = `(v)− 1, as claimed.
So for uv an edge of G , we have either `(u) = `(v) (when u and v are at
the same level) or `(u) = `(v)− 1 in the case that `(u) < `(v). That is,
|`(u)− `(v)| ≤ 1 for all uv ∈ E .
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Theorem 6.3

Theorem 6.3

Theorem 6.3. Let G be a connected graph. Then the values of the level
function ` returned by BFS are the distances in G from the root r :
`(v) = dG (r , v) for all v ∈ V .

Proof. By Theorem 6.2(a), `(v) = dT (r , v). Now dT (r , v) ≥ dG (r , v)
because T is a subgraph of G . Thus `(v) ≥ dG (r , v). We now reverse this
inequality by an induction argument on the length of the shortest
(r , v)-path in G .

Let P be a shortest (r , v)-path in G , where r 6= v . If P is of length 1 then
v is adjacent to r in G . By Steps 3 through 12, the root r is first added to
Q and then all neighbors of r are added to T at level 1. This establishes
the base case for the induction argument. Now, for the induction
hypothesis, suppose the inequality `(v) ≤ dG (r , v) holds for shortest
(r , v)-path P in G of length k. Consider vertex v in G such that the
shortest (r , v)-path P in G is of length k + 1. Let u be the predecessor of
v on P (not to be confused with the predecessor p(v) in T ).
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Theorem 6.3

Theorem 6.3 (continued)

Theorem 6.3. Let G be a connected graph. Then the values of the level
function ` returned by BFS are the distances in G from the root r :
`(v) = dG (r , v) for all v ∈ V .

Proof (continued). Then rPu is a shortest (r , u)-path in G , and
dG (r , u) = dG (r , v) = 1 = k. So by the induction hypothesis,
`(u) ≤ dG (r , u). Since u and v are adjacent in G , then by Theorem 6.2(b)
we have `(v)− `(u) ≤ 1. Therefore
`(v) ≤ `(u) + 1 ≤ dG (r , u) + 1 = dG (r , v).

So the induction step holds and by mathematical induction
`(v) ≤ dG (r , v) for all vertices v in G . Combining this with the first
inequality gives the desired equality.
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Proposition 6.5

Proposition 6.5. Let u and v be two vertices of G , with f (u) < f (v).

(a) If u and v are adjacent in G , then l(u) < l(v).

(b) u is an ancestor of v in T if and only if l(v) < l(u).

Proof. (a) Informally, this claim is that if u is added to the top of stack S
before its neighbor v (i.e., f (u) < f (v)), then v leaves the stack before u
(i.e., l(u) < l(v)). By Steps 12 and 13, u is added to stack S at time
f (u). By Steps 10–13, all uncolored neighbors are considered for addition
to S before vertex u is removed from S . Parameter i is incremented by 1
in Step 9 after each uncolored neighbor of u is considered for addition to
S .

Since f (u) < f (v) then v is one of these neighbors of u. So v is added
to the top of stack S while u is still in S . Since vertices are removed from
the top of S (by Steps 8 and 16), and i is incremented by 1 each time a
vertex is removed from the stack (by Step 9), so the l value of v (assigned
in Step 15) is less than the l value of u, l(v) < l(u), as claimed.
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Proposition 6.5

Proposition 6.5 (continued 1)

Proposition 6.5. Let u and v be two vertices of G , with f (u) < f (v).

(a) If u and v are adjacent in G , then l(u) < l(v).
(b) u is an ancestor of v in T if and only if l(v) < l(u).

Proof (continued). (b) First, suppose that u is an ancestor of v in T .
By Steps 9 and 12, the values of f increase along the path uTv (i is
incremented in Step 9 and f values are assigned to vertices using the value
of i and the predecessor function in Step 12). That is, f (u) < f (v). So by
part (a) to each vertex in path uTv we have l(u<l(v) (we have to apply to
consecutive vertices in the path since part (a) requires that we compare
neighbors), as claimed.

Conversely, suppose that u is not an ancestor of v in T . Since
f (u) < f (v) by hypothesis then v is not an ancestor of u wither, it could
lie on another “branch” of the family tree). So u does not lie on the path
rTv and v does not lie on the path rTu. Let s be the last common vertex
of these two paths.
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Proposition 6.5

Proposition 6.5 (continued 2)

Proposition 6.5. Let u and v be two vertices of G , with f (u) < f (v).

(a) If u and v are adjacent in G , then l(u) < l(v).

(b) u is an ancestor of v in T if and only if l(v) < l(u).

Proof (continued). Since f (u) < f (v) then u was added to stack S
before v , and hence all the proper descendants of s on path rTv can be
added to S only after all the proper descendants of s on the path rTu have
been added and removed from S (after which s is the top vertex). In
particular, v can only be added to S (at time f (v)) after u has been
removed (at time l(u)), so that l(u) < f (v). Since v is added to S before
it is removed then f (v) < l(v). Therefore l(u) < f (v) < l(v). So if u is
not an ancestor of v in T then l(u) < l(v). Since u 6= v then l(u) 6= l(v),
so the contrapositive of what we have shown is that if l(u) ≥ l(v) (that is,
if l(v) < l(u)) then u is an ancestor of v in T , as claimed.
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Proposition 6.6

Proposition 6.6

Proposition 6.6. Let T be a DFS-tree of a graph G . Then every edge of
G joins vertices which are related in T .

Proof. Let uv be any edge of G . Without loss of generality, say
f (u) < f (v). By Proposition 6.5(a) we have l(v) < l(u). By Proposition
6.5(b), u is an ancestor of v and so (by definition) u and v are related in
T .
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