Graph Theory

Chapter 6. Tree-Search Algorithms

6.2. Minimum-Weight Spanning Trees—Proofs of Theorems

Table of contents

Theorem 6.10

Theorem 6.10. Every Jarník-Prim tree is an optimal tree.

Proof. Let T be a Jarník-Prim tre. We give an inductive proof on v(T), the number of vertices in an optimal (spanning) tree. If v(T) = 1 or v(T) = 2, then the result holds trivially, giving the base case. For the induction hypothesis, suppose all Jarník-Prim trees on k vertices are optimal trees and let T be a Jarník-Prim tree on v(T) = k + 1 vertices.

Graph Theory

Theorem 6.10. Every Jarník-Prim tree is an optimal tree.

Proof. Let T be a Jarník-Prim tre. We give an inductive proof on v(T), the number of vertices in an optimal (spanning) tree. If v(T) = 1 or v(T) = 2, then the result holds trivially, giving the base case. For the induction hypothesis, suppose all Jarník-Prim trees on k vertices are optimal trees and let T be a Jarník-Prim tree on v(T) = k + 1 vertices.

The first edge added to T is an edge e of least-weight in the edge cut associated with $\{r\}$ by Step 5. That is, $w(e) \le w(f)$ for all edges fincident with r. We first <u>claim</u> that some optimal tree includes this edge e. Let T^* be an optimal tree. If $e \in E(T^*)$ then our claim holds, so suppose $e \notin E(T^*)$. Thus $T^* + e$ contains a cycle C (this follows from Proposition 4.1 since in T^* there is a unique path connecting the ends of e). Theorem 6.10. Every Jarník-Prim tree is an optimal tree.

Proof. Let T be a Jarník-Prim tre. We give an inductive proof on v(T), the number of vertices in an optimal (spanning) tree. If v(T) = 1 or v(T) = 2, then the result holds trivially, giving the base case. For the induction hypothesis, suppose all Jarník-Prim trees on k vertices are optimal trees and let T be a Jarník-Prim tree on v(T) = k + 1 vertices.

The first edge added to T is an edge e of least-weight in the edge cut associated with $\{r\}$ by Step 5. That is, $w(e) \le w(f)$ for all edges fincident with r. We first <u>claim</u> that some optimal tree includes this edge e. Let T^* be an optimal tree. If $e \in E(T^*)$ then our claim holds, so suppose $e \notin E(T^*)$. Thus $T^* + e$ contains a cycle C (this follows from Proposition 4.1 since in T^* there is a unique path connecting the ends of e).

Theorem 6.10 (continued 1)

Theorem 6.10. Every Jarník-Prim tree is an optimal tree.

Proof (continued). Let f be the other end of C incident with r. Then $T^{**} = (T^* + e) \setminus f$ is a spanning tree of G. Since $w(e) \le w(f)$ as described above, then $w(T^{**}) = w(T^*) + w(e) - w(f) \le w(T^*)$. Since T^* is an optimal tree (that is, a minimum weight spanning tree) then T^{**} is also an optimal tree containing e and our first claim holds.

Now consider the graph G' = G/e (that is, contract edge e in G) and denote by r' the vertex resulting from the contraction of e. By Exercise 4.2.1(a), there is a one-to-one correspondence (i.e., a bijection) between the set of spanning trees of G that contain e and the set of spanning trees of G'. Set T' = T/e. Our second claim is that T' is a Jarník-Prim tree of G' rooted at r'.

Theorem 6.10 (continued 1)

Theorem 6.10. Every Jarník-Prim tree is an optimal tree.

Proof (continued). Let f be the other end of C incident with r. Then $T^{**} = (T^* + e) \setminus f$ is a spanning tree of G. Since $w(e) \le w(f)$ as described above, then $w(T^{**}) = w(T^*) + w(e) - w(f) \le w(T^*)$. Since T^* is an optimal tree (that is, a minimum weight spanning tree) then T^{**} is also an optimal tree containing e and our first claim holds.

Now consider the graph G' = G/e (that is, contract edge *e* in *G*) and denote by r' the vertex resulting from the contraction of *e*. By Exercise 4.2.1(a), there is a one-to-one correspondence (i.e., a bijection) between the set of spanning trees of *G* that contain *e* and the set of spanning trees of *G'*. Set T' = T/e. Our second <u>claim</u> is that T' is a Jarník-Prim tree of *G'* rooted at r'.

Theorem 6.10 (continued 2)

Theorem 6.10. Every Jarník-Prim tree is an optimal tree.

Proof (continued). At any step in the creation of T as a Jarník-Prim tree with root r (say the tree at this step is T_s ; we assume T_s includes edge e by the first claim), let $T'_s = T_s/e$. Then $\partial(T_s) = \partial(T'_s)$. so an edge of minimum weight in $\partial(T_s)$ is also an edge of minimum weight in $\partial(T'_s)$. In Jarník-Prim tree T the edge added to T_s is of minimum weight in $\partial(T_s)$ (by Step 5), so the same edge may be added to T_s if the Jarník-Prim algorithm is applied to it at this step. Since the final tree T is a Jarník-Prim tree of G with root r, then T' is a Jarník-Prim tree of G with root r', as claimed. Since G' has k vertices, then T' is an optimal tree by the induction hypothesis. Since e is a least-weight edge incident to r in G, then T is an optimal tree of G, and the induction step holds. Therefore, by mathematical induction, the result holds for all connected graphs G.

Graph Theory

Theorem 6.10 (continued 2)

Theorem 6.10. Every Jarník-Prim tree is an optimal tree.

Proof (continued). At any step in the creation of T as a Jarník-Prim tree with root r (say the tree at this step is T_s ; we assume T_s includes edge e by the first claim), let $T'_s = T_s/e$. Then $\partial(T_s) = \partial(T'_s)$. so an edge of minimum weight in $\partial(T_s)$ is also an edge of minimum weight in $\partial(T'_s)$. In Jarník-Prim tree T the edge added to T_s is of minimum weight in $\partial(T_s)$ (by Step 5), so the same edge may be added to T_s if the Jarník-Prim algorithm is applied to it at this step. Since the final tree T is a Jarník-Prim tree of G with root r, then T' is a Jarník-Prim tree of G with root r', as claimed. Since G' has k vertices, then T' is an optimal tree by the induction hypothesis. Since e is a least-weight edge incident to r in G, then T is an optimal tree of G, and the induction step holds. Therefore, by mathematical induction, the result holds for all connected graphs G.