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Theorem 9.1. Menger's Theorem (Undirected, Vertex Version)

Theorem 9.1. Menger's Theorem

Theorem 9.1. MENGER’S THEOREM (UNDIRECTED, VERTEX
VERSION).

In any graph G(x,y), where x and y are nonadjacent, the maximum
number of pairwise internally disjoint xy-paths is equal to the minimum
number of vertices in an xy-vertex-cut, that is, p(x, y) = c(x,y).
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Theorem 9.1. Menger's Theorem

Theorem 9.1. MENGER’S THEOREM (UNDIRECTED, VERTEX
VERSION).

In any graph G(x,y), where x and y are nonadjacent, the maximum
number of pairwise internally disjoint xy-paths is equal to the minimum
number of vertices in an xy-vertex-cut, that is, p(x, y) = c(x,y).

Proof. The proof is based on induction on the number of edges of G.
First, if G has 3 vertices then G is a path of length 2 with x and y as its
ends and p(x,y) = c(x,y) = 1, this is the base case. Now suppose the
result holds for all graphs on less than m edges and let e(G) = m.
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Theorem 9.1. Menger's Theorem (Undirected, Vertex Version)

Theorem 9.1. Menger's Theorem

Theorem 9.1. MENGER’S THEOREM (UNDIRECTED, VERTEX
VERSION).

In any graph G(x,y), where x and y are nonadjacent, the maximum
number of pairwise internally disjoint xy-paths is equal to the minimum
number of vertices in an xy-vertex-cut, that is, p(x, y) = c(x,y).

Proof. The proof is based on induction on the number of edges of G.
First, if G has 3 vertices then G is a path of length 2 with x and y as its
ends and p(x,y) = c(x,y) = 1, this is the base case. Now suppose the
result holds for all graphs on less than m edges and let e(G) = m.

First, “for convenience” we denote k = c(x, y) = cg(x,y). Now any
xy-path in G must meet at least one vertex of an xy-cut (or else the
Xxy-cut is not an xy-cut since there would be a path connecting x and y
after the deletion of the xy-cut). So in a family P of internally disjoint
xy-paths, the paths meet an xy-cut in at least |P| vertices. Hence |P| < k
and P(X7Y) = pG(X7)/) <k= C(X7y)-
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Theorem 9.1. Menger's Theorem (Undirected, Vertex Version)

Theorem 9.1. Menger's Theorem (continued 1)

Proof (continued). So we need to show that pg(x,y) > k = c(x, y). We
may assume that there is an edge e = uv incident to neither x nor y
(otherwise every xy-path is of length two and then the number of
internally disjoint paths equals the size of the xy-cut, since each vertex in
the xy-cut is the center of one of the internally disjoint 2-paths and
conversely). So H= G\ e so that e(H) = e(G) —1=m— 1.
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Theorem 9.1. Menger's Theorem (continued 1)

Proof (continued). So we need to show that pg(x,y) > k = c(x, y). We
may assume that there is an edge e = uv incident to neither x nor y
(otherwise every xy-path is of length two and then the number of
internally disjoint paths equals the size of the xy-cut, since each vertex in
the xy-cut is the center of one of the internally disjoint 2-paths and
conversely). So H= G\ e so that e(H) = e(G) —1=m— 1.

Because H is a subgraph of G then py(x,y) < pg(x,y). By the induction
hypothesis, py(x,y) = cy(x,y). Now an xy-vertex-cut of H = G\ e along
with either end of e is an xy-vertex-cut of G (since the only difference
between G and H is the edge e, and when an xy-vertex-cut of H along
with an end of e is deleted from G, the result is graph H with the
xy-vertex-cut of H deleted). Since cy(x, y) denotes the minimum size of a
vertex cut separating x and y in H then cg(x,y) is at most cy(x,y) + 1;
i.e., cg(x,y) < cn(x,y) + 1. Therefore

pG(X,_)/)ZPH(X,}/):CH(X,}/)ECG(X,_)/)—].:k—].- (*)
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Theorem 9.1. Menger's Theorem (continued 2)

Proof (continued). ...
pe (%) = pH(x,y) = cH(x,y) 2 ca(x,y) —1=k—=1. (%)

As discussed above, pg(x,y) < k so if pg(x,y) > k then we have
pc(x,y) = k = cg(x,y) and we are done. So without loss of generality we
can suppose the inequalities in () are equalities so that, in particular,

CH(Xay) =k-1
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Theorem 9.1. Menger's Theorem (continued 2)

Proof (continued). ...

pc(x,y) 2 pr(x,y) = cu(x,y) 2 ca(x,y) —1=k—-1. (%)

As discussed above, pg(x,y) < k so if pg(x,y) > k then we have
pc(x,y) = k = cg(x,y) and we are done. So without loss of generality we
can suppose the inequalities in () are equalities so that, in particular,
cH(x,y) =k —1. Solet S = {v1,v,...,vk_1} be a minimum
xy-vertex-cut in H. Let X be the set of vertices reachable from x in H—§
(so y € X), and let Y be the set of vertices reachable from y in H — S (so
x € Y). Because |S| = k — 1 < k, the set S is not an xy-vertex-cut of G,
so there is an xy-path in G — S. This path necessarily includes edge e (or
else it would be an xy-path in H — S and S would not be an xy-vertex-cut
of H). So one end of e is reachable from x in H — S and the other end of
e is reachable from y in H—S;sayue X and v e Y.
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Theorem 9.1. Menger's Theorem (continued 3)

Proof (continued).

re o ey

X S ¥
Figure 9.3(a). Sets X and Y, and edge e.

Now consider the graph G/Y obtained from G by shrinking Y to a single
vertex y. Every xy-vertex cut T in G/Y is also an xy-vertex cut in G,
because if P were an xy-path in G which avoids T then the subgraph
P/Y of G/Y would contain an xy-path in G/Y which avoids T
contradicting the property of T as an xy-vertex-cut in G/Y. So the
minimum size of an xy-vertex-cut in G/Y is at least as big as the
minimum size of an xy-vertex-cut in G: cg/y > ce(x,y) = k.
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Theorem 9.1. Menger's Theorem (continued 4)

Proof (continued). On the other hand, cg,y(x,y) < k because S U {u}
(where |S U {u}| = k) is an xy-vertex-cut of G/Y"
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Figure 9.3(b). Graphs G/Y (left) and G/X (right).

So SU{u} is a minimum xy-vertex-cut of G/Y and cg/y(x,y) = k. To
conclude the proof, we will find k internally disjoint xy-paths in G/Y and
from these produce k internally disjoint xy-paths in G.
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Theorem 9.1. Menger's Theorem (continued 5)

Proof (continued). Now vertex y of G is reachable from v (see Figure
9.1(a)) and v # y, so the number of edges of G/Y is less than the
number of edges in G. So by the induction hypothesis, there are

k = pg,y(x,y) internally disjoint xy-paths. Now the neighbors of y in
G/Y are vi,va,...,vk_1,u. So the k internally disjoint xy-paths in G/Y,
Pi, Py, ..., Py, must have the property that each vertex of S U {u} lies on
one of them (see Figure 9.1(b) left). We take v; € V(P;) for
1<i<k-—1anducP.

/” \v =

Figure 9.3(b). Graphs G/Y (left) and G/X (right).
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Theorem 9.1. Menger's Theorem (Undirected, Vertex Version)

Theorem 9.1. Menger's Theorem (continued 6)

Proof (continued). Likewise, there are k internally disjoint xy-paths
Q1, @2, ..., Qx in G/X obtained by shrinking X to x with v; € V(Q;) for
1<i<k—1andv e Qx (see Figure 9.1(b) right).
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Figure 9.3(b). Graphs G/Y (left) and G/X (right).

We then have k internally disjoint xy-paths in G, namely xP;v;Q;y for
1<i<k—1, and xPruvQyy (see Figure 9.3(c)).
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Theorem 9.1. Menger's Theorem (continued 7)

Proof (continued). We then have k internally disjoint xy-paths in G,
namely xP;v;Q;y for 1 < i < k —1, and xPxuvQyy (see Figure 9.3(c)). So
pc(x,y) = cg(x,y) = k and the result holds for graphs with m edges.

Therefore, by mathematical induction on the number of edges of a graph,

the claim holds for all graphs. O

Figure 9.3(c). k internally disjoint xy-paths in G.
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Theorem 9.2

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

k(G) = min{p(u,v) | u,ve V,u#v,uv ¢ E}. (9.3)
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Theorem 9.2

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then
k(G) = min{p(u,v) |u,ve V,u# v,uv & E}. (9.3)

Proof. Notice that loops do not affect p(u, v). As observed in Note 9.1.B,
p(u, v) is not affected by parallel edges when v and v are not adjacent.
Hence, we may assume without loss of generality that G is simple.
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Theorem 9.2

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then
k(G) = min{p(u,v) |u,ve V,u# v,uv & E}. (9.3)

Proof. Notice that loops do not affect p(u, v). As observed in Note 9.1.B,
p(u, v) is not affected by parallel edges when v and v are not adjacent.
Hence, we may assume without loss of generality that G is simple.

By definition, x(G) = min{p(u,v) | u,v € V,u # v}. Let this minimum
be attained for the pair xy so that x(G) = p(x, y). If x and y are not
adjacent then we are done. So we consider the case where x and y are
adjacent.
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Theorem 9.2

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then
k(G) = min{p(u,v) |u,ve V,u# v,uv & E}. (9.3)

Proof. Notice that loops do not affect p(u, v). As observed in Note 9.1.B,
p(u, v) is not affected by parallel edges when v and v are not adjacent.
Hence, we may assume without loss of generality that G is simple.

By definition, x(G) = min{p(u,v) | u,v € V,u # v}. Let this minimum
be attained for the pair xy so that x(G) = p(x, y). If x and y are not
adjacent then we are done. So we consider the case where x and y are
adjacent.

Consider the graph H = G \ xy obtained by deleting edge xy from G.
Since G is simple, then pg(x,y) = pu(x,y) + 1. By Menger's Theorem
(Theorem 9.1), py(x,y) = cH(x,y). Let X be a minimum vertex cut in H
separating x and y so that py(x,y) = cy(x,y) = | X]|. Hence
pe(x,y) = [X|+ 1.
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Theorem 9.2 (continued 1)

Proof (continued). ASSUME V \ X = {x,y}. Then

k(G) = pg(x,y) by the choice of x and y
= |X|+1
= (n—2)+1since V\ X ={x,y}
= n—1

But if K(G) = n — 1 then there are n — 1 internally disjoint paths from x
to y; these include the edge xy and all paths of length 2 from x to y and
through a third vertex. Since n—1 is a minimum for pg(x,y) then G must
be complete, but this CONTRADICTS the hypothesis that G has a pair of
nonadjacent vertices. So the assumption that V' \ X = {x, y} is false and
hence there must be a vertex z of G such that {x,y,z} C V' \ X.
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Theorem 9.2 (continued 2)

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then
k(G) = min{p(u,v) |u,v e V,u# v,uv & E}. (9.3)

Proof (continued). ...there must be a vertex z of G such that
{x.y,z} S V\X.
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Theorem 9.2 (continued 2)

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then
k(G) = min{p(u,v) |u,v e V,u# v,uv & E}. (9.3)

Proof (continued). ...there must be a vertex z of G such that

{x,y,z} C V\ X. We suppose (interchanging the roles of x and y if
necessary) that x and z belong to different components of H — X. Then x
and z are nonadjacent in G (since a vertex cut cannot separate adjacent
vertices). So X U {y} is a vertex cut of G separating x and z (since this
vertex cut removes edge xy, H = G \ xy, and x and z are in different
components of H — X). So c(x,z) < | XU{y}| = |X|+1=ps(x,y)
(since pg(x,y) = |X| + 1, as shown above).
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Theorem 9.2. If G has at least one pair of nonadjacent vertices, then
k(G) = min{p(u,v) |u,v e V,u# v,uv & E}. (9.3)

Proof (continued). ...there must be a vertex z of G such that
{x,y,z} C V\ X. We suppose (interchanging the roles of x and y if
necessary) that x and z belong to different components of H — X. Then x
and z are nonadjacent in G (since a vertex cut cannot separate adjacent
vertices). So X U {y} is a vertex cut of G separating x and z (since this
vertex cut removes edge xy, H = G \ xy, and x and z are in different
components of H — X). So c(x,z) < | XU{y}| = |X|+1=ps(x,y)
(since pg(x,y) = |X]|+ 1, as shown above). On the other hand, by
Menger's Theorem (Theorem 9.1), p(x, z) = c(x,z). Hence
p(x,z) < p(x,y). We chose {x,y} such that p(x,y) = k(G) so we now
have p(x, z) = p(x,y) = k(G) (since  is a minimum of p(u,v)). Because
x and z are nonadjacent, then
k(G) = p(x,z) = min{p(u,v) | u,v € V,v#v,uv & E}, as claimed. [J
Graph Theory February 13,2023 13 / 13



	Theorem 9.1. Menger's Theorem (Undirected, Vertex Version)
	Theorem 9.2

