Graph Theory

Chapter 9. Connectivity

9.1. Vertex Connectivity—Proofs of Theorems

Table of contents

(1) Theorem 9.1. Menger's Theorem (Undirected, Vertex Version)
(2) Theorem 9.2

Theorem 9.1. Menger's Theorem

Theorem 9.1. Menger's Theorem (Undirected, Vertex Version).
In any graph $G(x, y)$, where x and y are nonadjacent, the maximum number of pairwise internally disjoint $x y$-paths is equal to the minimum number of vertices in an $x y$-vertex-cut, that is, $p(x, y)=c(x, y)$.

Proof. The proof is based on induction on the number of edges of G. First, if G has 3 vertices then G is a path of length 2 with x and y as its ends and $p(x, y)=c(x, y)=1$; this is the base case. Now suppose the result holds for all graphs on less than m edges and let $e(G)=m$.

Theorem 9.1. Menger's Theorem

Theorem 9.1. Menger's Theorem (Undirected, Vertex Version).
In any graph $G(x, y)$, where x and y are nonadjacent, the maximum number of pairwise internally disjoint $x y$-paths is equal to the minimum number of vertices in an $x y$-vertex-cut, that is, $p(x, y)=c(x, y)$.

Proof. The proof is based on induction on the number of edges of G. First, if G has 3 vertices then G is a path of length 2 with x and y as its ends and $p(x, y)=c(x, y)=1$; this is the base case. Now suppose the result holds for all graphs on less than m edges and let $e(G)=m$.
First, "for convenience" we denote $k=c(x, y)=c_{G}(x, y)$. Now any $x y$-path in G must meet at least one vertex of an $x y$-cut (or else the $x y$-cut is not an $x y$-cut since there would be a path connecting x and y after the deletion of the $x y$-cut). So in a family \mathcal{P} of internally disjoint $x y$-paths, the paths meet an $x y$-cut in at least $|\mathcal{P}|$ vertices. Hence $|\mathcal{P}| \leq k$ and $p(x, y)=p_{G}(x, y) \leq k=c(x, y)$.

Theorem 9.1. Menger's Theorem

Theorem 9.1. Menger's Theorem (Undirected, Vertex Version).
In any graph $G(x, y)$, where x and y are nonadjacent, the maximum number of pairwise internally disjoint $x y$-paths is equal to the minimum number of vertices in an $x y$-vertex-cut, that is, $p(x, y)=c(x, y)$.

Proof. The proof is based on induction on the number of edges of G. First, if G has 3 vertices then G is a path of length 2 with x and y as its ends and $p(x, y)=c(x, y)=1$; this is the base case. Now suppose the result holds for all graphs on less than m edges and let $e(G)=m$.
First, "for convenience" we denote $k=c(x, y)=c_{G}(x, y)$. Now any $x y$-path in G must meet at least one vertex of an $x y$-cut (or else the $x y$-cut is not an $x y$-cut since there would be a path connecting x and y after the deletion of the $x y$-cut). So in a family \mathcal{P} of internally disjoint $x y$-paths, the paths meet an $x y$-cut in at least $|\mathcal{P}|$ vertices. Hence $|\mathcal{P}| \leq k$ and $p(x, y)=p_{G}(x, y) \leq k=c(x, y)$.

Theorem 9.1. Menger's Theorem (continued 1)

Proof (continued). So we need to show that $p_{G}(x, y) \geq k=c(x, y)$. We may assume that there is an edge $e=u v$ incident to neither x nor y (otherwise every $x y$-path is of length two and then the number of internally disjoint paths equals the size of the $x y$-cut, since each vertex in the $x y$-cut is the center of one of the internally disjoint 2-paths and conversely). So $H=G \backslash e$ so that $e(H)=e(G)-1=m-1$.

Because H is a subgraph of G then $p_{H}(x, y) \leq p_{G}(x, y)$. By the induction hypothesis, $p_{H}(x, y)=c_{H}(x, y)$. Now an $x y$-vertex-cut of $H=G \backslash e$ along with either end of e is an $x y$-vertex-cut of G (since the only difference between G and H is the edge e, and when an $x y$-vertex-cut of H along with an end of e is deleted from G, the result is graph H with the $x y$-vertex-cut of H deleted). Since $c_{H}(x, y)$ denotes the minimum size of a vertex cut separating x and y in H then $c_{G}(x, y)$ is at most $c_{H}(x, y)+1$; i.e., $c_{G}(x, y) \leq c_{H}(x, y)+1$. Therefore

$$
p_{G}(x, y) \geq p_{H}(x, y)=c_{H}(x, y) \geq c_{G}(x, y)-1=k-1 .
$$

Theorem 9.1. Menger's Theorem (continued 1)

Proof (continued). So we need to show that $p_{G}(x, y) \geq k=c(x, y)$. We may assume that there is an edge $e=u v$ incident to neither x nor y (otherwise every $x y$-path is of length two and then the number of internally disjoint paths equals the size of the $x y$-cut, since each vertex in the $x y$-cut is the center of one of the internally disjoint 2-paths and conversely). So $H=G \backslash e$ so that $e(H)=e(G)-1=m-1$.

Because H is a subgraph of G then $p_{H}(x, y) \leq p_{G}(x, y)$. By the induction hypothesis, $p_{H}(x, y)=c_{H}(x, y)$. Now an $x y$-vertex-cut of $H=G \backslash e$ along with either end of e is an $x y$-vertex-cut of G (since the only difference between G and H is the edge e, and when an $x y$-vertex-cut of H along with an end of e is deleted from G, the result is graph H with the $x y$-vertex-cut of H deleted). Since $c_{H}(x, y)$ denotes the minimum size of a vertex cut separating x and y in H then $c_{G}(x, y)$ is at most $c_{H}(x, y)+1$; i.e., $c_{G}(x, y) \leq c_{H}(x, y)+1$. Therefore

$$
\begin{equation*}
p_{G}(x, y) \geq p_{H}(x, y)=c_{H}(x, y) \geq c_{G}(x, y)-1=k-1 . \tag{*}
\end{equation*}
$$

Theorem 9.1. Menger's Theorem (continued 2)

Proof (continued). ...

$$
\begin{equation*}
p_{G}(x, y) \geq p_{H}(x, y)=c_{H}(x, y) \geq c_{G}(x, y)-1=k-1 . \tag{*}
\end{equation*}
$$

As discussed above, $p_{G}(x, y) \leq k$ so if $p_{G}(x, y) \geq k$ then we have $p_{G}(x, y)=k=c_{G}(x, y)$ and we are done. So without loss of generality we can suppose the inequalities in ($*$) are equalities so that, in particular, $c_{H}(x, y)=k-1$. So let $S=\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ be a minimum xy-vertex-cut in H. Let X be the set of vertices reachable from x in $H-S$ (so $y \notin X$), and let Y be the set of vertices reachable from y in $H-S$ (so $x \notin Y)$. Because $|S|=k-1<k$, the set S is not an $x y$-vertex-cut of G, so there is an $x y$-path in $G-S$. This path necessarily includes edge e (or else it would be an $x y$-path in $H-S$ and S would not be an $x y$-vertex-cut of H). So one end of e is reachable from x in $H-S$ and the other end of e is reachable from y in $H-S$; say $u \in X$ and $v \in Y$

Theorem 9.1. Menger's Theorem (continued 2)

Proof (continued). ...

$$
\begin{equation*}
p_{G}(x, y) \geq p_{H}(x, y)=c_{H}(x, y) \geq c_{G}(x, y)-1=k-1 . \tag{*}
\end{equation*}
$$

As discussed above, $p_{G}(x, y) \leq k$ so if $p_{G}(x, y) \geq k$ then we have $p_{G}(x, y)=k=c_{G}(x, y)$ and we are done. So without loss of generality we can suppose the inequalities in $(*)$ are equalities so that, in particular, $c_{H}(x, y)=k-1$. So let $S=\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ be a minimum $x y$-vertex-cut in H. Let X be the set of vertices reachable from x in $H-S$ (so $y \notin X$), and let Y be the set of vertices reachable from y in $H-S$ (so $x \notin Y)$. Because $|S|=k-1<k$, the set S is not an $x y$-vertex-cut of G, so there is an $x y$-path in $G-S$. This path necessarily includes edge e (or else it would be an $x y$-path in $H-S$ and S would not be an $x y$-vertex-cut of H). So one end of e is reachable from x in $H-S$ and the other end of e is reachable from y in $H-S$; say $u \in X$ and $v \in Y$.

Theorem 9.1. Menger's Theorem (continued 3)

Proof (continued).

$X \quad S$

Y

Figure 9.3(a). Sets X and Y, and edge e.
Now consider the graph G / Y obtained from G by shrinking Y to a single vertex y. Every $x y$-vertex cut T in G / Y is also an $x y$-vertex cut in G, because if P were an $x y$-path in G which avoids T then the subgraph P / Y of G / Y would contain an $x y$-path in G / Y which avoids T contradicting the property of T as an $x y$-vertex-cut in G / Y. So the minimum size of an $x y$-vertex-cut in G / Y is at least as big as the minimum size of an $x y$-vertex-cut in $G: c_{G / Y} \geq c_{G}(x, y)=k$.

Theorem 9.1. Menger's Theorem (continued 4)

Proof (continued). On the other hand, $c_{G / Y}(x, y) \leq k$ because $S \cup\{u\}$ (where $|S \cup\{u\}|=k$) is an $x y$-vertex-cut of G / Y :

Figure 9.3(b). Graphs G / Y (left) and G / X (right).
So $S \cup\{u\}$ is a minimum $x y$-vertex-cut of G / Y and $c_{G / Y}(x, y)=k$. To conclude the proof, we will find k internally disjoint $x y$-paths in G / Y and from these produce k internally disjoint $x y$-paths in G.

Theorem 9.1. Menger's Theorem (continued 5)

Proof (continued). Now vertex y of G is reachable from v (see Figure $9.1(\mathrm{a}))$ and $v \neq y$, so the number of edges of G / Y is less than the number of edges in G. So by the induction hypothesis, there are $k=p_{G / Y}(x, y)$ internally disjoint $x y$-paths. Now the neighbors of y in G / Y are $v_{1}, v_{2}, \ldots, v_{k-1}, u$. So the k internally disjoint $x y$-paths in G / Y, $P_{1}, P_{2}, \ldots, P_{k}$, must have the property that each vertex of $S \cup\{u\}$ lies on one of them (see Figure 9.1(b) left). We take $v_{i} \in V\left(P_{i}\right)$ for $1 \leq i \leq k-1$ and $u \in P_{k}$.

Figure 9.3(b). Graphs G / Y (left) and G / X (right).

Theorem 9.1. Menger's Theorem (continued 6)

Proof (continued). Likewise, there are k internally disjoint $x y$-paths $Q_{1}, Q_{2}, \ldots, Q_{k}$ in G / X obtained by shrinking X to x with $v_{i} \in V\left(Q_{i}\right)$ for $1 \leq i \leq k-1$ and $v \in Q_{k}$ (see Figure 9.1(b) right).

Figure 9.3(b). Graphs G / Y (left) and G / X (right).
We then have k internally disjoint $x y$-paths in G, namely $x P_{i} v_{i} Q_{i} y$ for $1 \leq i \leq k-1$, and $x P_{k} u v Q_{k} y$ (see Figure 9.3(c)).

Theorem 9.1. Menger's Theorem (continued 7)

Proof (continued). We then have k internally disjoint $x y$-paths in G, namely $x P_{i} v_{i} Q_{i} y$ for $1 \leq i \leq k-1$, and $x P_{k} u v Q_{k} y$ (see Figure 9.3(c)). So $p_{G}(x, y)=c_{G}(x, y)=k$ and the result holds for graphs with m edges. Therefore, by mathematical induction on the number of edges of a graph, the claim holds for all graphs.

Figure 9.3(c). k internally disjoint $x y$-paths in G.

Theorem 9.2

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

$$
\begin{equation*}
\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v, u v \notin E\} . \tag{9.3}
\end{equation*}
$$

Proof. Notice that loops do not affect $p(u, v)$. As observed in Note 9.1.B, $p(u, v)$ is not affected by parallel edges when u and v are not adjacent. Hence, we may assume without loss of generality that G is simple.

Theorem 9.2

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

$$
\begin{equation*}
\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v, u v \notin E\} . \tag{9.3}
\end{equation*}
$$

Proof. Notice that loops do not affect $p(u, v)$. As observed in Note 9.1.B, $p(u, v)$ is not affected by parallel edges when u and v are not adjacent. Hence, we may assume without loss of generality that G is simple.

By definition, $\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v\}$. Let this minimum be attained for the pair $x y$ so that $\kappa(G)=p(x, y)$. If x and y are not adjacent then we are done. So we consider the case where x and y are adjacent.

Theorem 9.2

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

$$
\begin{equation*}
\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v, u v \notin E\} . \tag{9.3}
\end{equation*}
$$

Proof. Notice that loops do not affect $p(u, v)$. As observed in Note 9.1.B, $p(u, v)$ is not affected by parallel edges when u and v are not adjacent. Hence, we may assume without loss of generality that G is simple. By definition, $\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v\}$. Let this minimum be attained for the pair $x y$ so that $\kappa(G)=p(x, y)$. If x and y are not adjacent then we are done. So we consider the case where x and y are adjacent.

> Consider the graph $H=G \backslash x y$ obtained by deleting edge $x y$ from G. Since G is simple, then $p_{G}(x, y)=p_{H}(x, y)+1$. By Menger's Theorem (Theorem 9.1), $p_{H}(x, y)=c_{H}(x, y)$. Let X be a minimum vertex cut in H separating x and y so that $p_{H}(x, y)=c_{H}(x, y)=|X|$. Hence $p_{G}(x, y)=|X|+1$.

Theorem 9.2

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

$$
\begin{equation*}
\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v, u v \notin E\} . \tag{9.3}
\end{equation*}
$$

Proof. Notice that loops do not affect $p(u, v)$. As observed in Note 9.1.B, $p(u, v)$ is not affected by parallel edges when u and v are not adjacent. Hence, we may assume without loss of generality that G is simple.
By definition, $\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v\}$. Let this minimum be attained for the pair $x y$ so that $\kappa(G)=p(x, y)$. If x and y are not adjacent then we are done. So we consider the case where x and y are adjacent.
Consider the graph $H=G \backslash x y$ obtained by deleting edge $x y$ from G. Since G is simple, then $p_{G}(x, y)=p_{H}(x, y)+1$. By Menger's Theorem (Theorem 9.1), $p_{H}(x, y)=c_{H}(x, y)$. Let X be a minimum vertex cut in H separating x and y so that $p_{H}(x, y)=c_{H}(x, y)=|X|$. Hence $p_{G}(x, y)=|X|+1$.

Theorem 9.2 (continued 1)

Proof (continued). ASSUME $V \backslash X=\{x, y\}$. Then

$$
\begin{aligned}
\kappa(G) & =p_{G}(x, y) \text { by the choice of } x \text { and } y \\
& =|X|+1 \\
& =(n-2)+1 \text { since } V \backslash X=\{x, y\} \\
& =n-1
\end{aligned}
$$

But if $\kappa(G)=n-1$ then there are $n-1$ internally disjoint paths from x to y; these include the edge $x y$ and all paths of length 2 from x to y and through a third vertex. Since $n-1$ is a minimum for $p_{G}(x, y)$ then G must be complete, but this CONTRADICTS the hypothesis that G has a pair of nonadjacent vertices. So the assumption that $V \backslash X=\{x, y\}$ is false and hence there must be a vertex z of G such that $\{x, y, z\} \subseteq V \backslash X$.

Theorem 9.2 (continued 2)

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

$$
\begin{equation*}
\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v, u v \notin E\} \tag{9.3}
\end{equation*}
$$

Proof (continued). ... there must be a vertex z of G such that $\{x, y, z\} \subseteq V \backslash X$. We suppose (interchanging the roles of x and y if necessary) that x and z belong to different components of $H-X$. Then x and z are nonadjacent in G (since a vertex cut cannot separate adjacent vertices). So $X \cup\{y\}$ is a vertex cut of G separating x and z (since this vertex cut removes edge $x y, H=G \backslash x y$, and x and z are in different components of $H-X)$. So $c(x, z) \leq|X \cup\{y\}|=|X|+1=p_{G}(x, y)$ (since $p_{G}(x, y)=|X|+1$, as shown above).

Theorem 9.2 (continued 2)

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

$$
\begin{equation*}
\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v, u v \notin E\} \tag{9.3}
\end{equation*}
$$

Proof (continued). ...there must be a vertex z of G such that $\{x, y, z\} \subseteq V \backslash X$. We suppose (interchanging the roles of x and y if necessary) that x and z belong to different components of $H-X$. Then x and z are nonadjacent in G (since a vertex cut cannot separate adjacent vertices). So $X \cup\{y\}$ is a vertex cut of G separating x and z (since this vertex cut removes edge $x y, H=G \backslash x y$, and x and z are in different components of $H-X)$. So $c(x, z) \leq|X \cup\{y\}|=|X|+1=p_{G}(x, y)$ (since $p_{G}(x, y)=|X|+1$, as shown above). On the other hand, by Menger's Theorem (Theorem 9.1), $p(x, z)=c(x, z)$. Hence $p(x, z) \leq p(x, y)$. We chose $\{x, y\}$ such that $p(x, y)=\kappa(G)$ so we now have $p(x, z)=p(x, y)=\kappa(G)$ (since κ is a minimum of $p(u, v)$). Because x and z are nonadjacent, then $\kappa(G)=p(x, z)=\min \{p(u, v) \mid u, v \in V, v \neq v, u v \notin E\}$, as claimed.

Theorem 9.2 (continued 2)

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

$$
\begin{equation*}
\kappa(G)=\min \{p(u, v) \mid u, v \in V, u \neq v, u v \notin E\} . \tag{9.3}
\end{equation*}
$$

Proof (continued). ... there must be a vertex z of G such that $\{x, y, z\} \subseteq V \backslash X$. We suppose (interchanging the roles of x and y if necessary) that x and z belong to different components of $H-X$. Then x and z are nonadjacent in G (since a vertex cut cannot separate adjacent vertices). So $X \cup\{y\}$ is a vertex cut of G separating x and z (since this vertex cut removes edge $x y, H=G \backslash x y$, and x and z are in different components of $H-X)$. So $c(x, z) \leq|X \cup\{y\}|=|X|+1=p_{G}(x, y)$ (since $p_{G}(x, y)=|X|+1$, as shown above). On the other hand, by Menger's Theorem (Theorem 9.1), $p(x, z)=c(x, z)$. Hence $p(x, z) \leq p(x, y)$. We chose $\{x, y\}$ such that $p(x, y)=\kappa(G)$ so we now have $p(x, z)=p(x, y)=\kappa(G)$ (since κ is a minimum of $p(u, v)$). Because x and z are nonadjacent, then $\kappa(G)=p(x, z)=\min \{p(u, v) \mid u, v \in V, v \neq v, u v \notin E\}$, as claimed.

