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Theorem 9.1. Menger’s Theorem

Theorem 9.1. Menger’s Theorem (Undirected, Vertex
Version).
In any graph G (x , y), where x and y are nonadjacent, the maximum
number of pairwise internally disjoint xy -paths is equal to the minimum
number of vertices in an xy -vertex-cut, that is, p(x , y) = c(x , y).

Proof. The proof is based on induction on the number of edges of G .
First, if G has 3 vertices then G is a path of length 2 with x and y as its
ends and p(x , y) = c(x , y) = 1; this is the base case. Now suppose the
result holds for all graphs on less than m edges and let e(G ) = m.

First, “for convenience” we denote k = c(x , y) = cG (x , y). Now any
xy -path in G must meet at least one vertex of an xy -cut (or else the
xy -cut is not an xy -cut since there would be a path connecting x and y
after the deletion of the xy -cut). So in a family P of internally disjoint
xy -paths, the paths meet an xy -cut in at least |P| vertices. Hence |P| ≤ k
and p(x , y) = pG (x , y) ≤ k = c(x , y).
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Theorem 9.1. Menger’s Theorem (continued 1)

Proof (continued). So we need to show that pG (x , y) ≥ k = c(x , y). We
may assume that there is an edge e = uv incident to neither x nor y
(otherwise every xy -path is of length two and then the number of
internally disjoint paths equals the size of the xy -cut, since each vertex in
the xy -cut is the center of one of the internally disjoint 2-paths and
conversely). So H = G \ e so that e(H) = e(G )− 1 = m − 1.

Because H is a subgraph of G then pH(x , y) ≤ pG (x , y). By the induction
hypothesis, pH(x , y) = cH(x , y). Now an xy -vertex-cut of H = G \ e along
with either end of e is an xy -vertex-cut of G (since the only difference
between G and H is the edge e, and when an xy -vertex-cut of H along
with an end of e is deleted from G , the result is graph H with the
xy -vertex-cut of H deleted). Since cH(x , y) denotes the minimum size of a
vertex cut separating x and y in H then cG (x , y) is at most cH(x , y) + 1;
i.e., cG (x , y) ≤ cH(x , y) + 1. Therefore

pG (x , y) ≥ pH(x , y) = cH(x , y) ≥ cG (x , y)− 1 = k − 1. (∗)
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Theorem 9.1. Menger’s Theorem (continued 2)

Proof (continued). . . .

pG (x , y) ≥ pH(x , y) = cH(x , y) ≥ cG (x , y)− 1 = k − 1. (∗)

As discussed above, pG (x , y) ≤ k so if pG (x , y) ≥ k then we have
pG (x , y) = k = cG (x , y) and we are done. So without loss of generality we
can suppose the inequalities in (∗) are equalities so that, in particular,
cH(x , y) = k − 1. So let S = {v1, v2, . . . , vk−1} be a minimum
xy -vertex-cut in H. Let X be the set of vertices reachable from x in H − S
(so y 6∈ X ), and let Y be the set of vertices reachable from y in H − S (so
x 6∈ Y ). Because |S | = k − 1 < k, the set S is not an xy -vertex-cut of G ,
so there is an xy -path in G − S . This path necessarily includes edge e (or
else it would be an xy -path in H − S and S would not be an xy -vertex-cut
of H). So one end of e is reachable from x in H − S and the other end of
e is reachable from y in H − S ; say u ∈ X and v ∈ Y .
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Theorem 9.1. Menger’s Theorem (continued 3)

Proof (continued).

Figure 9.3(a). Sets X and Y , and edge e.

Now consider the graph G/Y obtained from G by shrinking Y to a single
vertex y . Every xy -vertex cut T in G/Y is also an xy -vertex cut in G ,
because if P were an xy -path in G which avoids T then the subgraph
P/Y of G/Y would contain an xy -path in G/Y which avoids T
contradicting the property of T as an xy -vertex-cut in G/Y . So the
minimum size of an xy -vertex-cut in G/Y is at least as big as the
minimum size of an xy -vertex-cut in G : cG/Y ≥ cG (x , y) = k.
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Theorem 9.1. Menger’s Theorem (continued 4)

Proof (continued). On the other hand, cG/Y (x , y) ≤ k because S ∪ {u}
(where |S ∪ {u}| = k) is an xy -vertex-cut of G/Y :

Figure 9.3(b). Graphs G/Y (left) and G/X (right).

So S ∪ {u} is a minimum xy -vertex-cut of G/Y and cG/Y (x , y) = k. To
conclude the proof, we will find k internally disjoint xy -paths in G/Y and
from these produce k internally disjoint xy -paths in G .
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Theorem 9.1. Menger’s Theorem (continued 5)

Proof (continued). Now vertex y of G is reachable from v (see Figure
9.1(a)) and v 6= y , so the number of edges of G/Y is less than the
number of edges in G . So by the induction hypothesis, there are
k = pG/Y (x , y) internally disjoint xy -paths. Now the neighbors of y in
G/Y are v1, v2, . . . , vk−1, u. So the k internally disjoint xy -paths in G/Y ,
P1,P2, . . . ,Pk , must have the property that each vertex of S ∪ {u} lies on
one of them (see Figure 9.1(b) left). We take vi ∈ V (Pi ) for
1 ≤ i ≤ k − 1 and u ∈ Pk .

Figure 9.3(b). Graphs G/Y (left) and G/X (right).
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Proof (continued). Likewise, there are k internally disjoint xy -paths
Q1,Q2, . . . ,Qk in G/X obtained by shrinking X to x with vi ∈ V (Qi ) for
1 ≤ i ≤ k − 1 and v ∈ Qk (see Figure 9.1(b) right).

Figure 9.3(b). Graphs G/Y (left) and G/X (right).

We then have k internally disjoint xy -paths in G , namely xPiviQiy for
1 ≤ i ≤ k − 1, and xPkuvQky (see Figure 9.3(c)).
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Theorem 9.1. Menger’s Theorem (continued 7)

Proof (continued). We then have k internally disjoint xy -paths in G ,
namely xPiviQiy for 1 ≤ i ≤ k − 1, and xPkuvQky (see Figure 9.3(c)). So
pG (x , y) = cG (x , y) = k and the result holds for graphs with m edges.
Therefore, by mathematical induction on the number of edges of a graph,
the claim holds for all graphs.

Figure 9.3(c). k internally disjoint xy -paths in G .
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Theorem 9.2

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

κ(G ) = min{p(u, v) | u, v ∈ V , u 6= v , uv 6∈ E}. (9.3)

Proof. Notice that loops do not affect p(u, v). As observed in Note 9.1.B,
p(u, v) is not affected by parallel edges when u and v are not adjacent.
Hence, we may assume without loss of generality that G is simple.

By definition, κ(G ) = min{p(u, v) | u, v ∈ V , u 6= v}. Let this minimum
be attained for the pair xy so that κ(G ) = p(x , y). If x and y are not
adjacent then we are done. So we consider the case where x and y are
adjacent.

Consider the graph H = G \ xy obtained by deleting edge xy from G .
Since G is simple, then pG (x , y) = pH(x , y) + 1. By Menger’s Theorem
(Theorem 9.1), pH(x , y) = cH(x , y). Let X be a minimum vertex cut in H
separating x and y so that pH(x , y) = cH(x , y) = |X |. Hence
pG (x , y) = |X |+ 1.
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Theorem 9.2 (continued 1)

Proof (continued). ASSUME V \ X = {x , y}. Then

κ(G ) = pG (x , y) by the choice of x and y

= |X |+ 1

= (n − 2) + 1 since V \ X = {x , y}
= n − 1.

But if κ(G ) = n − 1 then there are n − 1 internally disjoint paths from x
to y ; these include the edge xy and all paths of length 2 from x to y and
through a third vertex. Since n− 1 is a minimum for pG (x , y) then G must
be complete, but this CONTRADICTS the hypothesis that G has a pair of
nonadjacent vertices. So the assumption that V \ X = {x , y} is false and
hence there must be a vertex z of G such that {x , y , z} ⊆ V \ X .
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Theorem 9.2 (continued 2)

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

κ(G ) = min{p(u, v) | u, v ∈ V , u 6= v , uv 6∈ E}. (9.3)

Proof (continued). . . . there must be a vertex z of G such that
{x , y , z} ⊆ V \ X . We suppose (interchanging the roles of x and y if
necessary) that x and z belong to different components of H − X . Then x
and z are nonadjacent in G (since a vertex cut cannot separate adjacent
vertices). So X ∪ {y} is a vertex cut of G separating x and z (since this
vertex cut removes edge xy , H = G \ xy , and x and z are in different
components of H − X ). So c(x , z) ≤ |X ∪ {y}| = |X |+ 1 = pG (x , y)
(since pG (x , y) = |X |+ 1, as shown above).

On the other hand, by
Menger’s Theorem (Theorem 9.1), p(x , z) = c(x , z). Hence
p(x , z) ≤ p(x , y). We chose {x , y} such that p(x , y) = κ(G ) so we now
have p(x , z) = p(x , y) = κ(G ) (since κ is a minimum of p(u, v)). Because
x and z are nonadjacent, then
κ(G ) = p(x , z) = min{p(u, v) | u, v ∈ V , v 6= v , uv 6∈ E}, as claimed.
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