Graph Theory

Chapter 9. Connectivity

9.2. The Fan Lemma—Proofs of Theorems

Table of contents

(1) Lemma 9.3
(2) Proposition 9.4
(3) Theorem 9.6

Lemma 9.3

Lemma 9.3. Let G be a k-connected graph and let H be a graph obtained from G by adding a new vertex y and joining it to at least k vertices of G. Then H is also k-connected.

Proof. In any two vertices of graph H are adjacent (in which case the underlying simple graph of H is a complete graph), then the connectivity of H is one less than the number of vertices of H (by Note 9.1.A). Since $v(H) \geq k-1$, then $\kappa(H) \geq k$ and so H is k-connected. Now suppose $S \subset V(H)$ with $|S|=k-1$. We'll show that $H-S$ is connected and, since S is an arbitrary subset of $V(H)$, then $\kappa(H) \geq k$ and so H is k-connected.

Lemma 9.3

Lemma 9.3. Let G be a k-connected graph and let H be a graph obtained from G by adding a new vertex y and joining it to at least k vertices of G. Then H is also k-connected.

Proof. In any two vertices of graph H are adjacent (in which case the underlying simple graph of H is a complete graph), then the connectivity of H is one less than the number of vertices of H (by Note 9.1.A). Since $v(H) \geq k-1$, then $\kappa(H) \geq k$ and so H is k-connected. Now suppose $S \subset V(H)$ with $|S|=k-1$. We'll show that $H-S$ is connected and, since S is an arbitrary subset of $V(H)$, then $\kappa(H) \geq k$ and so H is k-connected.

> First, suppose $y \in S$. Then $H-S=G-(S \backslash\{y\})$. Since G is
> k-connected by hypothesis (and so G is j-connected for all $j \leq k$) and $|S \backslash\{y\}|=k-2$, then $H-S$ is connected, as needed.

Lemma 9.3

Lemma 9.3. Let G be a k-connected graph and let H be a graph obtained from G by adding a new vertex y and joining it to at least k vertices of G. Then H is also k-connected.

Proof. In any two vertices of graph H are adjacent (in which case the underlying simple graph of H is a complete graph), then the connectivity of H is one less than the number of vertices of H (by Note 9.1.A). Since $v(H) \geq k-1$, then $\kappa(H) \geq k$ and so H is k-connected. Now suppose $S \subset V(H)$ with $|S|=k-1$. We'll show that $H-S$ is connected and, since S is an arbitrary subset of $V(H)$, then $\kappa(H) \geq k$ and so H is k-connected.

First, suppose $y \in S$. Then $H-S=G-(S \backslash\{y\})$. Since G is k-connected by hypothesis (and so G is j-connected for all $j \leq k$) and $|S \backslash\{y\}|=k-2$, then $H-S$ is connected, as needed.

Lemma 9.3 (continued)

Lemma 9.3. Let G be a k-connected graph and let H be a graph obtained from G by adding a new vertex y and joining it to at least k vertices of G. Then H is also k-connected.

Proof (continued). Second, suppose $y \notin S$. Now y, by hypothesis, has at least k neighbors in $V(G)$. Since $|S|=k-1$, there is a neighbor z of y that is not in S. Since G is (by hypothesis, k-connected then $G-S$ is connected and so $(G-S)+y z$ is connected. Since z and y are vertices of $G-S$ and z is a neighbor of y, then $y z$ is an edge of $H-S$. So $(G-S)+y z$ is a connected spanning subgraph of $H-S$. Hence $H-S$ is connected, as needed.

Proposition 9.4

Proposition 9.4. Let G be a k-connected graph, and let X and Y be subsets of V of cardinality at least k. Then there exists in G a family of k pairwise disjoint (X, Y)-paths.

Proof. Create graph H by adding vertices x and y to graph G and joining x to each vertex of X and y to each vertex of Y. By Lemma 9.3 (applied twice), H is k-connected. By Menger's Theorem (Theorem 9.1) there exist k internally disjoint $x y$-paths in H. Deleting x and y from each of these paths, we obtain k disjoint paths $Q_{1}, Q_{2}, \ldots, Q_{k}$ in G, each of which has its initial vertex in X (since x is adjacent to all elements of X) and the terminal vertex in Y (since y is adjacent to all elements of Y).

Proposition 9.4

Proposition 9.4. Let G be a k-connected graph, and let X and Y be subsets of V of cardinality at least k. Then there exists in G a family of k pairwise disjoint (X, Y)-paths.

Proof. Create graph H by adding vertices x and y to graph G and joining x to each vertex of X and y to each vertex of Y. By Lemma 9.3 (applied twice), H is k-connected. By Menger's Theorem (Theorem 9.1) there exist k internally disjoint $x y$-paths in H. Deleting x and y from each of these paths, we obtain k disjoint paths $Q_{1}, Q_{2}, \ldots, Q_{k}$ in G, each of which has its initial vertex in X (since x is adjacent to all elements of X) and the terminal vertex in Y (since y is adjacent to all elements of Y).

Proposition 9.4 (continued)

Proposition 9.4. Let G be a k-connected graph, and let X and Y be subsets of V of cardinality at least k. Then there exists in G a family of k pairwise disjoint (X, Y)-paths.

Proof (continued). Now the Q_{i} are not necessarily (X, Y)-paths $((X, Y)$-paths have internal vertices in neither X nor $Y)$. But every Q_{i} contains a segment P_{i} with initial vertex in X, terminal vertex in Y, and no internal vertices in $X \cup Y$ (take P_{i} as the segment of Q_{i} from the "last" vertex of P_{i} in X to the "first" vertex following this one which is in $Y)$. That is, P_{i} is an (X, Y)-path for $1 \leq i \leq k$, and since the Q_{i} are internally disjoint then the P_{i} are pairwise disjoint, as claimed.

Theorem 9.6

Theorem 9.6. Let X be a set of k vertices in a k-connected graph G, where $k \geq 2$. Then there is a cycle in G which includes all vertices of S.

Proof. We give a proof based on induction on k. Note 9.2.A establishes the base case $k=2$. So suppose $k \geq 3$ and that the result holds for $k-1$.

Theorem 9.6

Theorem 9.6. Let X be a set of k vertices in a k-connected graph G, where $k \geq 2$. Then there is a cycle in G which includes all vertices of S.

Proof. We give a proof based on induction on k. Note 9.2.A establishes the base case $k=2$. So suppose $k \geq 3$ and that the result holds for $k-1$.

Let $x \in S$, and let $T=S \backslash x$. Since G is k-connected, then G is also
$k-1$ connected. Therefore by the induction hypothesis, there is a cycle C in G which includes the vertices in set T. Set $Y=V(C)$. If $x \in Y$, then C includes all vertices of S, as desired. So without loss of generality we may assume that $x \notin Y$.

Theorem 9.6

Theorem 9.6. Let X be a set of k vertices in a k-connected graph G, where $k \geq 2$. Then there is a cycle in G which includes all vertices of S.

Proof. We give a proof based on induction on k. Note 9.2.A establishes the base case $k=2$. So suppose $k \geq 3$ and that the result holds for $k-1$.

Let $x \in S$, and let $T=S \backslash x$. Since G is k-connected, then G is also $k-1$ connected. Therefore by the induction hypothesis, there is a cycle C in G which includes the vertices in set T. Set $Y=V(C)$. If $x \in Y$, then C includes all vertices of S, as desired. So without loss of generality we may assume that $x \notin Y$.

If $|Y| \geq k$ then by The Fan Lemma there is a k-fan in G from x to Y. Because $|T|=k-1$, the set T divides C into $k-1$ edge-disjoint segments:

Theorem 9.6

Theorem 9.6. Let X be a set of k vertices in a k-connected graph G, where $k \geq 2$. Then there is a cycle in G which includes all vertices of S.

Proof. We give a proof based on induction on k. Note 9.2.A establishes the base case $k=2$. So suppose $k \geq 3$ and that the result holds for $k-1$.

Let $x \in S$, and let $T=S \backslash x$. Since G is k-connected, then G is also $k-1$ connected. Therefore by the induction hypothesis, there is a cycle C in G which includes the vertices in set T. Set $Y=V(C)$. If $x \in Y$, then C includes all vertices of S, as desired. So without loss of generality we may assume that $x \notin Y$.

If $|Y| \geq k$ then by The Fan Lemma there is a k-fan in G from x to Y. Because $|T|=k-1$, the set T divides C into $k-1$ edge-disjoint segments:

Theorem 9.6 (continued 1)

Proof (continued).

Figure 9.5(a). The k-fan in G is from vertex x to the vertices represented with open circles. The vertices of S and T are represented by "solid" circles.

By the Pigeonhole Principle, some two paths of the fan, P and Q, end in the same one of these segments. The subgraph $C \cup P \cup Q$ contains three cycles, one of which includes $S=T \cup\{x\}$ (see Figure 9.5(b)).

Theorem 9.6 (continued 2)

Proof (continued).

Figure 9.5(b). The vertices of S are solid and are all in the same cycle. So the result holds if $|Y| \geq k$.

If $Y=V(C)$ satisfies $|Y|=k-1$ (which is the minimum $|Y|$ can be since cycle C includes all $k-1$ vertices of $T=S \backslash x$). Again by The Fan Lemma, there is a $(k-1)$-fan from x to Y in which each vertex of Y is the terminus of one path (so we have a case line Figure 9.5(a), but all vertices on C are represented by "solid" circles).

Theorem 9.6 (continued 2)

Proof (continued).

Figure 9.5(b). The vertices of S are solid and are all in the same cycle. So the result holds if $|Y| \geq k$.

If $Y=V(C)$ satisfies $|Y|=k-1$ (which is the minimum $|Y|$ can be since cycle C includes all $k-1$ vertices of $T=S \backslash x$). Again by The Fan Lemma, there is a $(k-1)$-fan from x to Y in which each vertex of Y is the terminus of one path (so we have a case line Figure 9.5(a), but all vertices on C are represented by "solid" circles).

Theorem 9.6 (continued 3)

Theorem 9.6. Let X be a set of k vertices in a k-connected graph G, where $k \geq 2$. Then there is a cycle in G which includes all vertices of S.

Proof (continued). As above, we can take P and Q as any "consecutive" edges in the fan and produce a cycle as is done in Figure 9.5(b). So the result holds if $|Y|=k-1$.

So assuming the result holds for $k-1$ implies the result holds for k itself. Therefore, by mathematical induction on k, the result holds for all graphs satisfying the hypotheses.

Theorem 9.6 (continued 3)

Theorem 9.6. Let X be a set of k vertices in a k-connected graph G, where $k \geq 2$. Then there is a cycle in G which includes all vertices of S.

Proof (continued). As above, we can take P and Q as any "consecutive" edges in the fan and produce a cycle as is done in Figure 9.5(b). So the result holds if $|Y|=k-1$.

So assuming the result holds for $k-1$ implies the result holds for k itself. Therefore, by mathematical induction on k, the result holds for all graphs satisfying the hypotheses.

