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Lemma 9.3

Lemma 9.3

Lemma 9.3. Let G be a k-connected graph and let H be a graph
obtained from G by adding a new vertex y and joining it to at least k
vertices of G . Then H is also k-connected.

Proof. In any two vertices of graph H are adjacent (in which case the
underlying simple graph of H is a complete graph), then the connectivity
of H is one less than the number of vertices of H (by Note 9.1.A). Since
v(H) ≥ k − 1, then κ(H) ≥ k and so H is k-connected. Now suppose
S ⊂ V (H) with |S | = k−1. We’ll show that H−S is connected and, since
S is an arbitrary subset of V (H), then κ(H) ≥ k and so H is k-connected.

First, suppose y ∈ S . Then H − S = G − (S \ {y}). Since G is
k-connected by hypothesis (and so G is j-connected for all j ≤ k) and
|S \ {y}| = k − 2, then H − S is connected, as needed.
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Lemma 9.3

Lemma 9.3 (continued)

Lemma 9.3. Let G be a k-connected graph and let H be a graph
obtained from G by adding a new vertex y and joining it to at least k
vertices of G . Then H is also k-connected.

Proof (continued). Second, suppose y 6∈ S . Now y , by hypothesis, has
at least k neighbors in V (G ). Since |S | = k − 1, there is a neighbor z of y
that is not in S . Since G is (by hypothesis, k-connected then G − S is
connected and so (G − S) + yz is connected. Since z and y are vertices of
G − S and z is a neighbor of y , then yz is an edge of H − S . So
(G − S) + yz is a connected spanning subgraph of H − S . Hence H − S is
connected, as needed.
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Proposition 9.4

Proposition 9.4

Proposition 9.4. Let G be a k-connected graph, and let X and Y be
subsets of V of cardinality at least k. Then there exists in G a family of k
pairwise disjoint (X ,Y )-paths.

Proof. Create graph H by adding vertices x and y to graph G and joining
x to each vertex of X and y to each vertex of Y . By Lemma 9.3 (applied
twice), H is k-connected. By Menger’s Theorem (Theorem 9.1) there exist
k internally disjoint xy -paths in H. Deleting x and y from each of these
paths, we obtain k disjoint paths Q1,Q2, . . . ,Qk in G , each of which has
its initial vertex in X (since x is adjacent to all elements of X ) and the
terminal vertex in Y (since y is adjacent to all elements of Y ).
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Proposition 9.4

Proposition 9.4 (continued)

Proposition 9.4. Let G be a k-connected graph, and let X and Y be
subsets of V of cardinality at least k. Then there exists in G a family of k
pairwise disjoint (X ,Y )-paths.

Proof (continued). Now the Qi are not necessarily (X ,Y )-paths
((X ,Y )-paths have internal vertices in neither X nor Y ). But every Qi

contains a segment Pi with initial vertex in X , terminal vertex in Y , and
no internal vertices in X ∪ Y (take Pi as the segment of Qi from the
“last” vertex of Pi in X to the “first” vertex following this one which is in
Y ). That is, Pi is an (X ,Y )-path for 1 ≤ i ≤ k, and since the Qi are
internally disjoint then the Pi are pairwise disjoint, as claimed.
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Theorem 9.6

Theorem 9.6

Theorem 9.6. Let X be a set of k vertices in a k-connected graph G ,
where k ≥ 2. Then there is a cycle in G which includes all vertices of S .

Proof. We give a proof based on induction on k. Note 9.2.A establishes
the base case k = 2. So suppose k ≥ 3 and that the result holds for k − 1.

Let x ∈ S , and let T = S \ x . Since G is k-connected, then G is also
k − 1 connected. Therefore by the induction hypothesis, there is a cycle C
in G which includes the vertices in set T . Set Y = V (C ). If x ∈ Y , then
C includes all vertices of S , as desired. So without loss of generality we
may assume that x 6∈ Y .

If |Y | ≥ k then by The Fan Lemma there is a k-fan in G from x to Y .
Because |T | = k − 1, the set T divides C into k − 1 edge-disjoint
segments:
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Theorem 9.6

Theorem 9.6 (continued 1)

Proof (continued).

Figure 9.5(a). The k-fan in G is from vertex x to the vertices represented
with open circles. The vertices of S and T are represented by “solid”

circles.

By the Pigeonhole Principle, some two paths of the fan, P and Q, end in
the same one of these segments. The subgraph C ∪ P ∪ Q contains three
cycles, one of which includes S = T ∪ {x} (see Figure 9.5(b)).
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Theorem 9.6

Theorem 9.6 (continued 2)

Proof (continued).

Figure 9.5(b). The vertices of S are solid and are all in the same cycle.

So the result holds if |Y | ≥ k.

If Y = V (C ) satisfies |Y | = k − 1 (which is the minimum |Y | can be since
cycle C includes all k − 1 vertices of T = S \ x). Again by The Fan
Lemma, there is a (k − 1)-fan from x to Y in which each vertex of Y is
the terminus of one path (so we have a case line Figure 9.5(a), but all
vertices on C are represented by “solid” circles).
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Theorem 9.6

Theorem 9.6 (continued 3)

Theorem 9.6. Let X be a set of k vertices in a k-connected graph G ,
where k ≥ 2. Then there is a cycle in G which includes all vertices of S .

Proof (continued). As above, we can take P and Q as any “consecutive”
edges in the fan and produce a cycle as is done in Figure 9.5(b). So the
result holds if |Y | = k − 1.

So assuming the result holds for k − 1 implies the result holds for k itself.
Therefore, by mathematical induction on k, the result holds for all graphs
satisfying the hypotheses.
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