Graph Theory

Chapter 9. Connectivity

9.4. Three-Connected Graphs-Proofs of Theorems

Table of contents

(1) Theorem 9.9
(2) Lemma 9.11
(3) Theorem 9.10
(4) Theorem 9.12

Theorem 9.9

Theorem 9.9. Let G be a 2 -connected graph and let S be a 2 -vertex cut of G. Then the marked S-components of G are also 2 -connected.

Proof. Let H be a marked S-component of G, with vertex set $S \cup X$ where X is the set of vertices of H that are not in S (notice $|X| \geq 1$ since H actually is a component). Then $|V(H)|=|S|+|X| \geq 3$. Thus if H is complete, it is 2-connected.

Theorem 9.9

Theorem 9.9. Let G be a 2 -connected graph and let S be a 2 -vertex cut of G. Then the marked S-components of G are also 2-connected.

Proof. Let H be a marked S-component of G, with vertex set $S \cup X$ where X is the set of vertices of H that are not in S (notice $|X| \geq 1$ since H actually is a component). Then $|V(H)|=|S|+|X| \geq 3$. Thus if H is complete, it is 2 -connected. If H is not complete, then every vertex cut of H is also a vertex cut of G as is to be shown in Exercise 9.4.A. Since G is 2-connected then every vertex cut of G (and hence of H) has at least 2 vertices. Therefore, every vertex cut of H has at least 2 vertices and so H is 2 -connected, as claimed.

Theorem 9.9

Theorem 9.9. Let G be a 2 -connected graph and let S be a 2 -vertex cut of G. Then the marked S-components of G are also 2-connected.

Proof. Let H be a marked S-component of G, with vertex set $S \cup X$ where X is the set of vertices of H that are not in S (notice $|X| \geq 1$ since H actually is a component). Then $|V(H)|=|S|+|X| \geq 3$. Thus if H is complete, it is 2-connected. If H is not complete, then every vertex cut of H is also a vertex cut of G as is to be shown in Exercise 9.4.A. Since G is 2-connected then every vertex cut of G (and hence of H) has at least 2 vertices. Therefore, every vertex cut of H has at least 2 vertices and so H is 2 -connected, as claimed.

Lemma 9.11

Lemma 9.11. Let G be a 3 -connected graph on at least five vertices, and let $e=x y$ be an edge of G such that G / e is not 3-connected. Then there exists a vertex z such that $\{x, y, z\}$ is a 3 -vertex cut of G.

Proof. Let $\{z, w\}$ be a 2-vertex cut of G / e (which exists since G / e is hypothesized to not be 3 -connected; it has connectivity at most 2). At least one of these two vertices, say z, is not the vertex resulting from the contraction of e. Let $F=G-z$.

Lemma 9.11

Lemma 9.11. Let G be a 3 -connected graph on at least five vertices, and let $e=x y$ be an edge of G such that G / e is not 3 -connected. Then there exists a vertex z such that $\{x, y, z\}$ is a 3 -vertex cut of G.

Proof. Let $\{z, w\}$ be a 2-vertex cut of G / e (which exists since G / e is hypothesized to not be 3-connected; it has connectivity at most 2). At least one of these two vertices, say z, is not the vertex resulting from the contraction of e. Let $F=G-\boldsymbol{z}$. Because G is 3 -connected by hypothesis (so that there are at least 3 internally disjoint paths between any two vertices of G), then F is 2-connected (since we loose at most one of the internally disjoint paths between two vertices when vertex z is removed from G, namely one containing vertex z). However, $F / e=(G-z) / e=(G / e)-z($ since z is not an end of e) has a cut vertex, namely w (since $\{z, w\}$ is a 2 -vertex cut of G / e).

Lemma 9.11

Lemma 9.11. Let G be a 3-connected graph on at least five vertices, and let $e=x y$ be an edge of G such that G / e is not 3 -connected. Then there exists a vertex z such that $\{x, y, z\}$ is a 3 -vertex cut of G.

Proof. Let $\{z, w\}$ be a 2 -vertex cut of G / e (which exists since G / e is hypothesized to not be 3-connected; it has connectivity at most 2). At least one of these two vertices, say z, is not the vertex resulting from the contraction of e. Let $F=G-z$. Because G is 3-connected by hypothesis (so that there are at least 3 internally disjoint paths between any two vertices of G), then F is 2-connected (since we loose at most one of the internally disjoint paths between two vertices when vertex z is removed from G, namely one containing vertex z). However, $F / e=(G-z) / e=(G / e)-z$ (since z is not an end of e) has a cut vertex, namely w (since $\{z, w\}$ is a 2 -vertex cut of G / e).

Lemma 9.11 (continued)

Lemma 9.11. Let G be a 3 -connected graph on at least five vertices, and let $e=x y$ be an edge of G such that G / e is not 3 -connected. Then there exists a vertex z such that $\{x, y, z\}$ is a 3 -vertex cut of G.

Proof (continued). It now follows from Exercise 9.1.5 that w must be the vertex resulting from the contraction of edge e. Since $e=x y$, then $(G / e)-w=G-\{x, y\}$. Therefore

$$
G-\{x, y, z\}=(G-\{x, y\})-z=(G / e-w)-z=(G / e)-\{z, w\}
$$

is disconnected, since we started with $\{z, w\}$ as a 2 -vertex cut of G / e. That is, $\{x, y, z\}$ is a 3 -vertex cut in G, as claimed.

Theorem 9.10

Theorem 9.10. Let G be a 3 -connected graph on at least five vertices. Then G contains an edge e such that G / e is 3 -connected.

Proof. Let G be a 3 -connected graph on at least five vertices. ASSUME there is no edge e of G such that G / e is 3 -connected. That is, assume for any edge $e=x y$ of G, the contraction G / e is not 3-connected. By Lemma 9.11, there exists a vertex z such that $\{x, y, z\}$ is a 3-vertex cut of G. Then $G-\{x, y, z\}$ has at least two connected components, so choose edge e and vertex z in such a way that $G-\{x, y, z\}$ has a component F with as many vertices as possible.

Theorem 9.10

Theorem 9.10. Let G be a 3 -connected graph on at least five vertices. Then G contains an edge e such that G / e is 3 -connected.

Proof. Let G be a 3 -connected graph on at least five vertices. ASSUME there is no edge e of G such that G / e is 3 -connected. That is, assume for any edge $e=x y$ of G, the contraction G / e is not 3 -connected. By Lemma 9.11, there exists a vertex z such that $\{x, y, z\}$ is a 3-vertex cut of G. Then $G-\{x, y, z\}$ has at least two connected components, so choose edge e and vertex z in such a way that $G-\{x, y, z\}$ has a component F with as many vertices as possible. Consider the graph $G-z$. Since G is 3-connected (so that there are at least 3 internally disjoint paths between any two vertices of G), then $G-z$ is 2 -connected (since we loose at most one of the internally disjoint paths between two vertices when vertex z is removed from G, namely one containing vertex z). Moreover $G-z$ has the 2 -vertex cut $\{x, y\}$. See Figure 9.9 below.

Theorem 9.10

Theorem 9.10. Let G be a 3 -connected graph on at least five vertices. Then G contains an edge e such that G / e is 3 -connected.

Proof. Let G be a 3 -connected graph on at least five vertices. ASSUME there is no edge e of G such that G / e is 3 -connected. That is, assume for any edge $e=x y$ of G, the contraction G / e is not 3 -connected. By Lemma 9.11, there exists a vertex z such that $\{x, y, z\}$ is a 3-vertex cut of G. Then $G-\{x, y, z\}$ has at least two connected components, so choose edge e and vertex z in such a way that $G-\{x, y, z\}$ has a component F with as many vertices as possible. Consider the graph $G-z$. Since G is 3-connected (so that there are at least 3 internally disjoint paths between any two vertices of G), then $G-z$ is 2-connected (since we loose at most one of the internally disjoint paths between two vertices when vertex z is removed from G, namely one containing vertex z). Moreover $G-z$ has the 2 -vertex cut $\{x, y\}$. See Figure 9.9 below.

Theorem 9.10 (continued 1)

Proof (continued).

Figure 9.9.
So by Theorem 9.9, the marked $\{x, y\}$-component $H=G[V(F) \cup\{x, y\}]$ is 2-connected.

Let u be a neighbor of z in some component of $G-\{x, y, z\}$ different from F. Since $f=z u$ is an edge of G so, by our assumption, G / f is not 3-connected. By Lemma 9.11 there is a vertex v such that $\{z, u, v\}$ is a 3-vertex cut of G.

Theorem 9.10 (continued 1)

Proof (continued).

Figure 9.9.
So by Theorem 9.9, the marked $\{x, y\}$-component $H=G[V(F) \cup\{x, y\}]$ is 2 -connected.

Let u be a neighbor of z in some component of $G-\{x, y, z\}$ different from F. Since $f=z u$ is an edge of G so, by our assumption, G / f is not 3-connected. By Lemma 9.11 there is a vertex v such that $\{z, u, v\}$ is a 3-vertex cut of G.

Theorem 9.10 (continued 2)

Theorem 9.10. Let G be a 3 -connected graph on at least five vertices. Then G contains an edge e such that G / e is 3 -connected.

Proof (continued). Moreover, because H is 2-connected then $H-v$ is connected (similar to the argument above that G being 3-connected implies that $G-z$ is 2-connected); it may be that $v \notin V(H)$ in which case we have $H-v$ as H itself. Since $H-v$ is connected then it is contained in some connected component of $G-\{z, u, v\}$. But then this component has more vertices than F (because H has two more vertices than F, so that $H-v$ has one or two more vertices than F; see Figure 9.9 again). But this CONTRADICTS the choice of edge $e=x y$ and vertex z as yielding F as a component of $G-\{x, y, z\}$ with as many vertices as possible. So the assumption that for every edge e of $G, G / e$ is not 3 -connected is false. That is, there is some edge e of G such that G / e is 3-connected, as claimed.

Theorem 9.10 (continued 2)

Theorem 9.10. Let G be a 3 -connected graph on at least five vertices. Then G contains an edge e such that G / e is 3 -connected.

Proof (continued). Moreover, because H is 2-connected then $H-v$ is connected (similar to the argument above that G being 3-connected implies that $G-z$ is 2-connected); it may be that $v \notin V(H)$ in which case we have $H-v$ as H itself. Since $H-v$ is connected then it is contained in some connected component of $G-\{z, u, v\}$. But then this component has more vertices than F (because H has two more vertices than F, so that $H-v$ has one or two more vertices than F; see Figure 9.9 again). But this CONTRADICTS the choice of edge $e=x y$ and vertex z as yielding F as a component of $G-\{x, y, z\}$ with as many vertices as possible. So the assumption that for every edge e of $G, G / e$ is not 3 -connected is false. That is, there is some edge e of G such that G / e is 3-connected, as claimed.

Theorem 9.12

Theorem 9.12. Let G be a 3-connected graph, let v be a vertex of G of degree at least four, and let H be an expansion of G at v. Then H is 3-connected.

Proof. Since G is 3-connected then $G-v$ is 2 -connected as described in the proofs of both Lemma 9.11 and Theorem 9.10. So by Lemma 9.3 of Section 9.2 (since v_{1} and v_{2} have at least two neighbors in $G-v$) the graph $H \backslash e$ is 2-connected.

Theorem 9.12

Theorem 9.12. Let G be a 3-connected graph, let v be a vertex of G of degree at least four, and let H be an expansion of G at v. Then H is 3-connected.

Proof. Since G is 3 -connected then $G-v$ is 2 -connected as described in the proofs of both Lemma 9.11 and Theorem 9.10. So by Lemma 9.3 of Section 9.2 (since v_{1} and v_{2} have at least two neighbors in $G-v$) the graph $H \backslash e$ is 2-connected.

Let x and y be two vertices of H. If x and y are in $G-v$ then there are three internally disjoint paths in H joining x and y since G is 3-connected (though if one of the paths contains vertex v then we must split vertex v into vertices v_{1} and v_{2} in that path). If $x \in\left\{v_{1}, v_{2}\right\}$, say $x=v_{1}$, and $y \in G-v$ then there are three internally disjoint paths in G joining v and y since G is 3-connected.

Theorem 9.12

Theorem 9.12. Let G be a 3-connected graph, let v be a vertex of G of degree at least four, and let H be an expansion of G at v. Then H is 3-connected.

Proof. Since G is 3 -connected then $G-v$ is 2 -connected as described in the proofs of both Lemma 9.11 and Theorem 9.10. So by Lemma 9.3 of Section 9.2 (since v_{1} and v_{2} have at least two neighbors in $G-v$) the graph $H \backslash e$ is 2-connected.

Let x and y be two vertices of H. If x and y are in $G-v$ then there are three internally disjoint paths in H joining x and y since G is 3-connected (though if one of the paths contains vertex v then we must split vertex v into vertices v_{1} and v_{2} in that path). If $x \in\left\{v_{1}, v_{2}\right\}$, say $x=v_{1}$, and $y \in G-v$ then there are three internally disjoint paths in G joining v and y since G is 3 -connected.

Theorem 9.12 (continued 1)

Proof (continued). Then these three internally disjoint $x y$-paths in G determine three internally disjoint $v_{1} y$-paths in H, where we replace x either with v_{1} or with $v_{1} e v_{2}$ as needed (depending on whether the neighbor of x in an $x y$-path is a neighbor of v_{1} or of v_{2} in H). If $x, y \in\left\{v_{1}, v_{2}\right\}$, say $x=v_{1}$ and $y=v_{2}$, then there are two neighbors w_{1} and z_{1} of v_{1}, and two neighbors w_{2} and z_{2} of v_{2} where $\left\{w_{1}, z_{1}\right\} \cap\left\{w_{2}, z_{2}\right\}=\varnothing$. Since $G-v$ is 2-connected, there are two internally disjoint $z_{1} z_{2}$-paths in $G-v$ and there are two internally disjoint $w_{1} w_{2}$-paths in $G-v$. If one of the $z_{1} z_{2}$-paths is disjoint from one of the $w_{1} w_{2}$-paths, then there are two disjoint internally disjoint $v_{1} v_{2}$-paths (giving, along with $v_{1} e v_{2}$, a total of three such paths).

Theorem 9.12 (continued 1)

Proof (continued). Then these three internally disjoint $x y$-paths in G determine three internally disjoint $v_{1} y$-paths in H, where we replace x either with v_{1} or with $v_{1} e v_{2}$ as needed (depending on whether the neighbor of x in an $x y$-path is a neighbor of v_{1} or of v_{2} in H). If $x, y \in\left\{v_{1}, v_{2}\right\}$, say $x=v_{1}$ and $y=v_{2}$, then there are two neighbors w_{1} and z_{1} of v_{1}, and two neighbors w_{2} and z_{2} of v_{2} where $\left\{w_{1}, z_{1}\right\} \cap\left\{w_{2}, z_{2}\right\}=\varnothing$. Since $G-v$ is 2-connected, there are two internally disjoint $z_{1} z_{2}$-paths in $G-v$ and there are two internally disjoint $w_{1} w_{2}$-paths in $G-v$. If one of the $z_{1} z_{2}$-paths is disjoint from one of the $w_{1} w_{2}$-paths, then there are two disjoint internally disjoint $v_{1} v_{2}$-paths (giving, along with $v_{1} e v_{2}$, a total of three such paths).

Theorem 9.12 (continued 1)

Proof (continued). Then these three internally disjoint $x y$-paths in G determine three internally disjoint $v_{1} y$-paths in H, where we replace x either with v_{1} or with $v_{1} e v_{2}$ as needed (depending on whether the neighbor of x in an $x y$-path is a neighbor of v_{1} or of v_{2} in H). If $x, y \in\left\{v_{1}, v_{2}\right\}$, say $x=v_{1}$ and $y=v_{2}$, then there are two neighbors w_{1} and z_{1} of v_{1}, and two neighbors w_{2} and z_{2} of v_{2} where $\left\{w_{1}, z_{1}\right\} \cap\left\{w_{2}, z_{2}\right\}=\varnothing$. Since $G-v$ is 2-connected, there are two internally disjoint $z_{1} z_{2}$-paths in $G-v$ and there are two internally disjoint $w_{1} w_{2}$-paths in $G-v$. If one of the $z_{1} z_{2}$-paths is disjoint from one of the $w_{1} w_{2}$-paths, then there are two disjoint internally disjoint $v_{1} v_{2}$-paths (giving, along with $v_{1} e v_{2}$, a total of three such paths).

Theorem 9.12 (continued 2)

Theorem 9.12. Let G be a 3-connected graph, let v be a vertex of G of degree at least four, and let H be an expansion of G at v. Then H is 3-connected.

Proof (continued). So we only need to consider the case where both internally disjoint $z_{1} z_{2}$-paths intersect both internally disjoint $w_{1} w_{2}$-paths. In Exercise 9.4.B it is to be shown that there are disjoint paths $P_{z_{1} w_{2}}$ (joining z_{1} and w_{2}) and $P_{w_{1} z_{2}}$ (joining w_{1} and z_{2}). Since $x=v_{1}$ is adjacent to w_{1} and z_{1}, and $y=v_{2}$ is adjacent to w_{2} and z_{2} then there are two internally disjoint paths joining v_{1} and v_{2} through these points. So there are three internally disjoint $v_{1} v_{2}$-paths (including $v_{1} e v_{2}$). Therefore, H is 3 -connected, as claimed.

