Graph Theory

Chapter 9. Connectivity 9.7. Chordal Graphs—Proofs of Theorems

Theorem 9.19. Let G be a connected chordal graph which is not complete, and let S be a minimal vertex cut of G. Then S is a clique of G.

Proof. Let *S* be a minimal vertex cut of *G*. ASSUME *S* contains two nonadjacent vertices of *G*, say *x* and *y*. Let G_1 and G_2 be two components of G - S. Because *S* is a minimal cut, then in *G* both *x* and *y* are joined to vertices of both G_1 and G_2 ; if not, then either *x* or *y* could be dropped from *S* and we would have a smallest vertex cut of *G*, contradicting the minimality of *S*.

Theorem 9.19. Let G be a connected chordal graph which is not complete, and let S be a minimal vertex cut of G. Then S is a clique of G.

Proof. Let S be a minimal vertex cut of G. ASSUME S contains two nonadjacent vertices of G, say x and y. Let G_1 and G_2 be two components of G - S. Because S is a minimal cut, then in G both x and y are joined to vertices of both G_1 and G_2 ; if not, then either x or y could be dropped from S and we would have a smallest vertex cut of G, contradicting the minimality of S. Let P_1 and P_2 be the shortest xy-paths all of whose vertices lie in G_1 and G_2 , respectively. Then $P_1 \cup P_2$ is an induced cycle of length at least four in G (since P_1 and P_2 are shortest xy-paths then the cycle $P_1 \cup P_2$ has no chords so that the subgraph of G induced by $P_1 \cup P_2$ is in fact a cycle). But since G is chordal, this is a CONTRADICTION to Note 9.7.A. So the assumption that S contains two nonadjacent vertices of G is false, and hence every pair of vertices of S are adjacent in G. That is, S is a clique of G. Thus S is a cut clique of G, as claimed.

Theorem 9.19. Let G be a connected chordal graph which is not complete, and let S be a minimal vertex cut of G. Then S is a clique of G.

Proof. Let S be a minimal vertex cut of G. ASSUME S contains two nonadjacent vertices of G, say x and y. Let G_1 and G_2 be two components of G - S. Because S is a minimal cut, then in G both x and y are joined to vertices of both G_1 and G_2 ; if not, then either x or y could be dropped from S and we would have a smallest vertex cut of G, contradicting the minimality of S. Let P_1 and P_2 be the shortest xy-paths all of whose vertices lie in G_1 and G_2 , respectively. Then $P_1 \cup P_2$ is an induced cycle of length at least four in G (since P_1 and P_2 are shortest xy-paths then the cycle $P_1 \cup P_2$ has no chords so that the subgraph of G induced by $P_1 \cup P_2$ is in fact a cycle). But since G is chordal, this is a CONTRADICTION to Note 9.7.A. So the assumption that S contains two nonadjacent vertices of G is false, and hence every pair of vertices of S are adjacent in G. That is, S is a clique of G. Thus S is a cut clique of G, as claimed.

Theorem 9.20. Let G be a connected chordal graph, and let V_1 be a maximal clique of G. Then the maximal cliques of G can be arranged in a sequence (V_1, v_2, \ldots, V_k) such that $V_j \cap \left(\bigcup_{i=1}^{j-1} V_j \right)$ is a clique of G for $2 \le j \le k$.

Proof. We give an inductive proof on k the number of maximal cliques of G. For the base case with k = 1, G is a complete graph and we take $V_1 = G$ and the claim holds trivially. For the inductive hypothesis, suppose the result holds for all graphs G with $k = \ell$ or less maximal cliques. Let G have $\ell + 1$ maximal cliques (where $\ell + 1 \ge 2$). Then G is not a complete graph and there are two nonadjacent vertices of G, which means that there are vertex cuts of G (notice the definition of a vertex cut requires the existence of two nonadjacent vertices). Let S be a minimal vertex cut of G. By Theorem 9.19, S is a clique of G.

Theorem 9.20. Let G be a connected chordal graph, and let V_1 be a maximal clique of G. Then the maximal cliques of G can be arranged in a sequence (V_1, v_2, \ldots, V_k) such that $V_j \cap \left(\bigcup_{i=1}^{j-1} V_j \right)$ is a clique of G for $2 \le j \le k$.

Proof. We give an inductive proof on k the number of maximal cliques of G. For the base case with k = 1, G is a complete graph and we take $V_1 = G$ and the claim holds trivially. For the inductive hypothesis, suppose the result holds for all graphs G with $k = \ell$ or less maximal cliques. Let G have $\ell + 1$ maximal cliques (where $\ell + 1 \ge 2$). Then G is not a complete graph and there are two nonadjacent vertices of G, which means that there are vertex cuts of G (notice the definition of a vertex cut requires the existence of two nonadjacent vertices). Let S be a minimal vertex cut of G. By Theorem 9.19, S is a clique of G.

Theorem 9.20 (continued 1)

Proof (continued). Recall from Section 9.4. Three-Connected Graphs that an S-component of G is a subgraph H of G induced by the set of vertices $S \cup X$ where X is the vertex set of a component of G - S. Let H_i , for 1 < i < p be the S-components of G (so $p \ge 2$) and let Y_i be a maximal clique of H_i containing S for $1 \le i \le p$. By Exercise 9.7.1, the maximal cliques H_1, H_2, \ldots, H_p are also maximal cliques are also maximal cliques of G and every maximal clique of G is a maximal clique of some H_i . So considering maximal cliques of G is equivalent to considering maximal degrees of the H_i 's. Since V_1 is a maximal clique, we can suppose without loss of generality (or by reindexing) that V_1 is a maximal clique of H_1 . The number of of maximal cliques of H_1 is at most ℓ (since the maximum cliques of the H_i 's are maximum cliques of G and there are at least two H_i 's), so by the induction hypothesis the maximal cliques of H_1 can be arranged in a sequence starting with V_1 and having the stated property in terms of intersections, unions, and cliques.

Theorem 9.20 (continued 1)

Proof (continued). Recall from Section 9.4. Three-Connected Graphs that an S-component of G is a subgraph H of G induced by the set of vertices $S \cup X$ where X is the vertex set of a component of G - S. Let H_i , for $1 \le i \le p$ be the S-components of G (so $p \ge 2$) and let Y_i be a maximal clique of H_i containing S for $1 \le i \le p$. By Exercise 9.7.1, the maximal cliques H_1, H_2, \ldots, H_p are also maximal cliques are also maximal cliques of G and every maximal clique of G is a maximal clique of some H_i . So considering maximal cliques of G is equivalent to considering maximal degrees of the H_i 's. Since V_1 is a maximal clique, we can suppose without loss of generality (or by reindexing) that V_1 is a maximal clique of H_1 . The number of of maximal cliques of H_1 is at most ℓ (since the maximum cliques of the H_i 's are maximum cliques of G and there are at least two H_i 's), so by the induction hypothesis the maximal cliques of H_1 can be arranged in a sequence starting with V_1 and having the stated property in terms of intersections, unions, and cliques.

Theorem 9.20 (continued 2)

Theorem 9.20. Let G be a connected chordal graph, and let V_1 be a maximal clique of G. Then the maximal cliques of G can be arranged in a sequence (V_1, v_2, \ldots, V_k) such that $V_j \cap \left(\bigcup_{i=1}^{j-1} V_j \right)$ is a clique of G for $2 \le j \le k$.

Proof (continued). Likewise, for $2 \le i \le p$ the maximal cliques of H_i can be arranged in a suitable sequence starting with Y_i . Notice that when we union together all the maximal cliques of H_i we get H_i itself. Since the H_i 's are S-components, then the intersection of H_i and H_j is S (for $i \ne j$), which is a clique. So if we concatenate all the sequences for H_1, H_2, \ldots, H_p then we get a sequence of maximal cliques of G satisfying the stated property. So the result holds for $k = \ell + 1$ and, by mathematical induction, it holds for all graphs.

Theorem 9.21. Every chordal graph which is not complete has two nonadjacent simplicial vertices.

Proof. By Theorem 9.20, chordal graph *G* has a simplicial decomposition, say (V_1, V_2, \ldots, V_k) where $k \ge 2$ since *G* is not complete. Let $x \in V_k \setminus \left(\bigcup_{i=1}^{k-1} V_i \right)$. In Exercise 7.9.A it is to be shown that *x* is a simplicial vertex. Notice that by Theorem 9.20, V_1 can be *any* maximal clique of *G*, so that a simplicial decomposition may start with any maximal clique (though we are not then free to choose the remaining maximum cliques in the sequence in any order we wish; we are only free to choose the first maximum clique in the sequence).

Theorem 9.21. Every chordal graph which is not complete has two nonadjacent simplicial vertices.

Proof. By Theorem 9.20, chordal graph G has a simplicial decomposition, say (V_1, V_2, \ldots, V_k) where $k \ge 2$ since G is not complete. Let $x \in V_k \setminus \left(\cup_{i=1}^{k-1} V_i
ight)$. In Exercise 7.9.A it is to be shown that x is a simplicial vertex. Notice that by Theorem 9.20, V_1 can be any maximal clique of G, so that a simplicial decomposition may start with any maximal clique (though we are not then free to choose the remaining maximum cliques in the sequence in any order we wish; we are only free to choose the first maximum clique in the sequence). Let π be a permutation of $\{1, 2, \dots, k\}$ such that $\pi(1) = k$ (and so $\pi(k) \neq k$) and $(V_{\pi(1)}, V_{\pi(2)}, \ldots, V_{\pi(k)})$ is a simplicial decomposition of G. Let $y \in V_{\pi(k)} \setminus \left(\cup_{i=1}^{k-1} V_{\pi(i)} \right)$. Again by Exercise 7.9.A, we have that y is also a simplicial vertex and not adjacent to x, as claimed.

Theorem 9.21. Every chordal graph which is not complete has two nonadjacent simplicial vertices.

Proof. By Theorem 9.20, chordal graph G has a simplicial decomposition, say (V_1, V_2, \ldots, V_k) where $k \ge 2$ since G is not complete. Let $x \in V_k \setminus \left(\cup_{i=1}^{k-1} V_i
ight)$. In Exercise 7.9.A it is to be shown that x is a simplicial vertex. Notice that by Theorem 9.20, V_1 can be any maximal clique of G, so that a simplicial decomposition may start with any maximal clique (though we are not then free to choose the remaining maximum cliques in the sequence in any order we wish; we are only free to choose the first maximum clique in the sequence). Let π be a permutation of $\{1, 2, \ldots, k\}$ such that $\pi(1) = k$ (and so $\pi(k) \neq k$) and $(V_{\pi(1)}, V_{\pi(2)}, \ldots, V_{\pi(k)})$ is a simplicial decomposition of G. Let $y \in V_{\pi(k)} \setminus \left(\cup_{i=1}^{k-1} V_{\pi(i)}
ight)$. Again by Exercise 7.9.A, we have that y is also a simplicial vertex and not adjacent to x, as claimed.

Theorem 9.23. A graph is chordal if and only if it is the intersection graph of a family of subtrees of a tree.

Proof. Let *G* be a chordal graph. By Theorem 9.20, *G* has a simplicial decomposition (V_1, V_2, \ldots, V_k) . We give an inductive proof on *k*, the number of maximal cliques of *G*. We'll show that *G* is the intersection graph of a family of subtrees $T = \{T_v \mid v \in V\}$ of a tree *T* with vertex set $x_1, x_2, \ldots, x_k\}$ such that $x_i \in T_v$ for all $v \in V_i$. The converse that if *G* is the intersection graph of a family of subtrees of a tree, then *G* is chordal, is left as Exercise 9.7.4.

Graph Theory

Theorem 9.23. A graph is chordal if and only if it is the intersection graph of a family of subtrees of a tree.

Proof. Let G be a chordal graph. By Theorem 9.20, G has a simplicial decomposition (V_1, V_2, \ldots, V_k) . We give an inductive proof on k, the number of maximal cliques of G. We'll show that G is the intersection graph of a family of subtrees $\mathcal{T} = \{T_v \mid v \in V\}$ of a tree T with vertex set x_1, x_2, \ldots, x_k such that $x_i \in T_v$ for all $v \in V_i$. The converse that if G is the intersection graph of a family of subtrees of a tree, then G is chordal, is left as Exercise 9.7.4. Recall from Section 1.3. Graphs Arising from Other Structures that the intersection graph of (V, \mathcal{F}) , where V is a set and \mathcal{F} is a family of subsets of V, is the graph whose vertex set is \mathcal{F} is \mathcal{F} with two sets in \mathcal{F} being adjacent in the intersection graph if their

Graph Theory

Theorem 9.23. A graph is chordal if and only if it is the intersection graph of a family of subtrees of a tree.

Proof. Let G be a chordal graph. By Theorem 9.20, G has a simplicial decomposition (V_1, V_2, \ldots, V_k) . We give an inductive proof on k, the number of maximal cliques of G. We'll show that G is the intersection graph of a family of subtrees $\mathcal{T} = \{T_v \mid v \in V\}$ of a tree \mathcal{T} with vertex set x_1, x_2, \ldots, x_k such that $x_i \in T_v$ for all $v \in V_i$. The converse that if G is the intersection graph of a family of subtrees of a tree, then G is chordal, is left as Exercise 9.7.4. Recall from Section 1.3. Graphs Arising from Other Structures that the intersection graph of (V, \mathcal{F}) , where V is a set and \mathcal{F} is a family of subsets of V, is the graph whose vertex set is \mathcal{F} is \mathcal{F} with two sets in \mathcal{F} being adjacent in the intersection graph if their intersection is nonempty.

Theorem 9.23 (continued 1)

Theorem 9.23. A graph is chordal if and only if it is the intersection graph of a family of subtrees of a tree.

Proof (continued). For the base case k = 1, G is a complete graph. Let T be a tree with vertex set $\{x_1\}$ and for each $v \in V(G)$ set $T_v = T$. Then for any $u, v \in V(G)$ we have $T_v \cap T_u = \{x_1\} \neq \emptyset$ so that the intersection graph of (T, T) is a complete graph on v(G) vertices, as claimed. For the induction hypothesis, suppose that every graph with $k = \ell$ maximal cliques is the intersection graph of a family of subtrees of a tree on ℓ vertices.

Let G be a chordal graph with $k = \ell + 1$ maximal degrees (where $k = \ell + 1 \ge 2$). Then by Theorem 9.20 G has a simplicial decomposition $(V_1, V_2, \ldots, V_{\ell+1})$. Consider the simplicial decomposition $(V_1, V_2, \ldots, V_{\ell})$ and let graph G' = (V', E') be the graph for which this is the simplicial decomposition (the vertex set V' is simply $\cup_{i=1}^{\ell} V_i$ and the edge set E' is the union of ℓ edge sets of complete graphs with vertex sets $(V_1, V_2, \ldots, V_{\ell})$.

()

Theorem 9.23 (continued 1)

Theorem 9.23. A graph is chordal if and only if it is the intersection graph of a family of subtrees of a tree.

Proof (continued). For the base case k = 1, G is a complete graph. Let T be a tree with vertex set $\{x_1\}$ and for each $v \in V(G)$ set $T_v = T$. Then for any $u, v \in V(G)$ we have $T_v \cap T_u = \{x_1\} \neq \emptyset$ so that the intersection graph of (T, T) is a complete graph on v(G) vertices, as claimed. For the induction hypothesis, suppose that every graph with $k = \ell$ maximal cliques is the intersection graph of a family of subtrees of a tree on ℓ vertices.

Let G be a chordal graph with $k = \ell + 1$ maximal degrees (where $k = \ell + 1 \ge 2$). Then by Theorem 9.20 G has a simplicial decomposition $(V_1, V_2, \ldots, V_{\ell+1})$. Consider the simplicial decomposition $(V_1, V_2, \ldots, V_{\ell})$ and let graph G' = (V', E') be the graph for which this is the simplicial decomposition (the vertex set V' is simply $\cup_{i=1}^{\ell} V_i$ and the edge set E' is the union of ℓ edge sets of complete graphs with vertex sets $(V_1, V_2, \ldots, V_{\ell})$.

- ()

Theorem 9.23 (continued 2)

Theorem 9.23. A graph is chordal if and only if it is the intersection graph of a family of subtrees of a tree.

Proof (continued). By the induction hypothesis, G' is the intersection graph of a family of subtrees $\mathcal{T} = \{T_v \mid v \in V'\}$ of a tree T' with vertex set $\{x_1, x_2, \ldots, x_{\ell+1}\}$. (We need to construct tree T and family of subtrees \mathcal{T} for graph G.) Let V_i be a maximal clique of G' such that $V_i \cap V_{\ell+1} \neq \emptyset$ (such V_i exists since $\ell + 1 \ge 2$). We next form tree T from tree T' by adding a new vertex of T, $X_{\ell+1}$, adjacent to vertex x_i of T'. For $v \in V_i$ form tree T_v by adding $x_{\ell+1}$ to tree T'_v be joining it to x_i . For $v \in V' \setminus V_i$, set $T_v = T'_v$. Finally, for $v \in V_{\ell+1} \setminus V'$ set $T_v = \{x_{\ell+1}\}$, and define $\mathcal{T} = \{T_v \mid v \in V\}$. In Exercise 9.7.B, is is to be shown that the intersection graph of (T, T) does, in fact, have the same adjacency structure as graph G.

Graph Theory