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() Graph Theory December 21, 2022 1 / 13



Table of contents

1 Theorem 12.1

2 Lemma 12.2.1

3 Lemma 12.2.2

4 Theorem 12.2

5 Corollary 12.2

() Graph Theory December 21, 2022 2 / 13



Theorem 12.1

Theorem 12.1

Theorem 12.1. Let M be the incidence matrix of a digraph D. Then B is
the row space of M and C is its orthogonal complement.

Proof. Let p be a real-valued function on the vertex set V of D and let
g = δp be the associated potential difference. Since for arc a (a link) with
tail x and head y we have δp(a) = p(x)− p(y), then for all a ∈ A we have

g(a) = δp(a) = p(x)− p(y) = (0 + 0 + · · ·+ 0 + p(x) + 0 + · · ·+ 0)

+(0− 0− · · · − 0− p(y)− 0− · · · − 0) =
∑
v∈V

p(v)mv (a), (∗)

because mv (a) = 1 when v is the tail of a, mv (a) = −1 when v is the
head of a, and mv (a) = 0 for all other v .

Since row v of M has entries
mv (a) where a ranges over the arcs of D, then potential difference g is a
linear combination of the rows of M (as a varies over all m arcs, g(a) is an
m-tuple) where the v th row has coefficient p(v).
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Theorem 12.1

Theorem 12.1 (continued 1)

Proof (continued). Conversely, any linear combination of the rows of M,∑
v∈V bvmv (a), is a potential difference g = δp, as in (∗), where

p(v) = bv (the coefficients). This is because mx(a) = 1 when x is the tail
of a, my (a) = −1 when y is the head of a, and mv (a) = 0 for all other v ,
so that g(a) = bxmx(a) + bymy (a) = p(x)(1) + p(y)(−1) = p(x)− p(y).
Therefore the row space of incidence matrix M is the bond space B.

Next, let f be a function on A. Then f is a circulation in D if (by
definition of “circulation”) f −(v) = f +(v) for all v ∈ V . For any a ∈ A
we have mx(a) = 1 when x is the tail of a, my (a) = −1 when y is the
head of a, and mv (a) = 0 for all other v , so

mv (a)f (a) =


0 if v 6∈ {x , y}

mx(a)f (a) = f (a) if v = x
my (a)f (a) = −f (a) if v = y
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Theorem 12.1

Theorem 12.1 (continued 2)

Proof (continued). Recall that f +(v) =
∑

a∈A, a is an arc from v

f (a) and

f −(v) =
∑

a∈A, a is an arc to v

f (a). Summing mv (a)f (a) over all a ∈ A (so

that all arcs with v as the tail contribute to f +(v) and all arcs with v as
the head contribute to f −(v)), we have∑
a∈A

mv (a)f (a) = f +(v)− f −(v) = 0 for all v ∈ V . As a ranges over all

arcs, mv (a) is the v th row of M and f (a) produces the vector
[f (a1), f (a2), . . . , f (am)] (say). So

∑
a∈A mv (a)f (a) is the inner product

(or dot product) of the v th row vector with the vector
[f (a1), f (a2), . . . , f (am)]. Since this inner product is 0 and v ∈ V is
arbitrary, then each element of the row space of M (namely, the vectors in
B by the first part of this theorem) is perpendicular to each circulation
(treated as a vector; that is, treated as an element of C.
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Theorem 12.1

Theorem 12.1 (continued 3)

Theorem 12.1. Let M be the incidence matrix of a digraph D. Then B is
the row space of M and C is its orthogonal complement.

Proof (continued). Conversely, any function f on A yields a vector

[f (a1), f (a2), . . . , f (am)] which satisfies
∑
a∈A

mv (a)f (a) = 0 for all v ∈ V

then, since
∑

a∈A mv (a)f (a) = f +(v)− f −(v) we must have
f +(v) = f −(v) for all v ∈ V . That is, f is a circulation. So the perp
space of B, B⊥, is C, as claimed.

Note. The row vectors of B and the vectors based on circulations all are
vectors in Rm where m = |A|. So that B and C are orthogonal
complements in Rm.
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Lemma 12.2.1

Lemma 12.2.1

Lemma 12.2.1. If f is a nonzero circulation (that is, f is not identically
zero), then ‖f ‖ contains a cycle.

Proof. By the conservation condition of a circulation, f −(v) = f +(v),
and the fact that f is nonzero, we see that the support of f , ‖f ‖, cannot
contain a vertex of degree one. So all vertices of ‖f ‖ must be of degree at
least two. Then by Theorem 2.1 (of Bondy and Murty’s graduate text),
the underlying undirected graph of ‖f ‖ contains a cycle, as claimed.
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Lemma 12.2.2

Lemma 12.2.2

Lemma 12.2.2. If g is a nonzero potential difference (that is, g is not
identically zero), then ‖g‖ contains a bond.

Proof. Let g = δp be a nonzero potential difference in digraph D. Since
g is not identically zero, then ‖g‖ contains some arc. Choose a vertex
u ∈ V which is incident with an arc of ‖g‖ and set
U = {v ∈ V | p(v) = p(u)}. Notice that U = V \ U consists of vertices
v ∈ V such that p(v) 6= p(u), so all arcs in the induced digraph [U,U]
have nonzero potential difference and hence at in ‖g‖. That is,
‖g‖ ⊇ [U,U].

Now u is chosen such that it is incident to an arc of ‖g‖, so
[U,U] is nonempty. Therefore [U,U] is an edge cut of the (underlying)
graph of D. Since a bond is a minimal edge cut, then [U,U] contains a
bond and because, ‖g‖ ⊇ [U,U], ‖g‖ contains a bond, as claimed.
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Theorem 12.2

Theorem 12.2

Theorem 12.2. Let B and C be basis matrices of B and C, respectively.
Then for any S ⊆ A:

(i) the columns of B|S are linearly independent if and only if S
is acyclic, and

(ii) the columns of C|S are linearly independent if and only if S
contains no bond.

Proof. Denote the column of B corresponding to arc a by B(a). The
columns of B|S are linearly dependent if and only if there exists a function
f on A such that f (a) 6= 0 for some a ∈ S , f (a) = 0 for all a 6∈ S , and∑

a∈A f (a)B(a) = 0 (that is, the coefficients in a linear combination of the
columns of B|S are not all 0, yet the linear combination is 0).

Therefore
the columns of B|S are linearly dependent if and only if there exists a
nonzero circulation f (that is, f is not identically zero) such that ‖f ‖ ⊆ S .
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Theorem 12.2

Theorem 12.2 (continued 1)

Proof (continued). If there is such a circulation f , then by Lemma
12.2.1 ‖f ‖, and therefore S , contains a cycle. That is, if B|S is linearly
dependent then S contains a cycle. In other words (considering the
contrapositive), if S is acyclic then B|S is linearly independent, as claimed.

On the other hand, suppose S contains a cycle C (that is, suppose the
arcs of S induce a sub-digraph of D whose underlying graph contains a
cycle); i.e., suppose S is not acyclic. Consider the circulation on D of
Note 12.1.B, fC . Then fC (a) = ±1 for each a ∈ C (hence fC is not
identically zero) so that the support is ‖fC‖ = C ⊆ S . As observed above,
this implies that the columns of B|S are linearly dependent. In other words
(considering the contrapositive), if B|S is linearly independent then S is
acyclic, as claimed. We have shown that the columns of B|S are linearly
independent if and only if S is acyclic, establishing (i).
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Theorem 12.2

Theorem 12.2 (continued 2)

Theorem 12.2. Let B and C be basis matrices of B and C, respectively.
Then for any S ⊆ A:

(i) the columns of B|S are linearly independent if and only if S
is acyclic, and

(ii) the columns of C|S are linearly independent if and only if S
contains no bond.

Proof (continued). The proof of (ii) is similar to the proof of (i), except
that we use Lemma 12.2.2 in place of Lemma 12.2.1 and we use potential
difference gB of Note 12.1.D in place of the circulation fC of Note
12.1.B.
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Corollary 12.2

Corollary 12.2

Corollary 12.2. Let D be a digraph. The dimensions of the bond space B
and the cycle space C are given by dim(B) = ν − ω and
dim(C) = ε− ν + ω, where ν is the number of vertices of D, ε is the
number of arcs of D, and ω is the number of connected components of D.

Proof. Consider the basis matrix B of B. By Theorem 12.2,
rank(B) = max{|S | | S ⊂ A,S is acyclic}. A maximal acyclic subgraph of
a connected graph is a spanning tree, and a maximal acyclic subgraph of a
graph is a spanning forest (consisting of a spanning tree of each connected
component). By Exercise 2.2.4 of Bondy and Murty’s Graph Theory with
Applications or by Exercise 4.1.1 of Bondy and Murty’s graduate level
Graph Theory, a maximal forest has ν − ω arcs. So dim(B) = rank(B), as
claimed.
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Corollary 12.2

Corollary 12.2 (continued)

Corollary 12.2. Let D be a digraph. The dimensions of the bond space B
and the cycle space C are given by dim(B) = ν − ω and
dim(C) = ε− ν + ω, where ν is the number of vertices of D, ε is the
number of arcs of D, and ω is the number of connected components of D.

Proof (continued). By Theorem 12.1, the bond space B and the cycle
space C of digraph D are orthogonal complements of each other in the
space Rε (see the note at the end of the proof of Theorem 12.1). So
dim(C) = ε− dim(B) = ε− ν + ω, as claimed.
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