Graph Theory

Chapter 12. The Cycle Space and Bond Space
12.2. The Number of Spanning Trees—Proofs of Theorems

|

Graph Theory
with Applications

AL Bondy USSR, Murey

Theorem 12.3 (continued)

Theorem 12.3. Let G be a graph and T a spanning tree of G. Let D be
any orientation of G and let B be the basis matrix of the bond space B
corresponding to 7. Then B is a unimodular matrix.

Proof (continued). ...
((B[T1)B1)|T) = (B|T1)(B1| T) = BJT.

Now B| T is an identity matrix by Note 12.1.F, so det(B|T) = 1. Since the
determinant of the product of two square matrices is the product of the
determinants (see my online Linear Algebra [MATH 2010] notes on Section
4.2. The Determinant of a Square Matrix; notice Theorem 4.4, “The
Multiplicative Property”) then we have det(B|T;)det(B1|T) = 1. Both
matrices B|T; and B1| T have only integer entries, so the determinants are
themselves integers. This implies det(B|T;) = +1, as claimed. O
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Theorem 12.3. Let G be a graph and T a spanning tree of G. Let D be
any orientation of G and let B be the basis matrix of the bond space B
corresponding to T. Then B is a unimodular matrix.

Proof. Let P be a submatrix of B is size (v — 1) x (v — 1). Suppose that
P = B|T;. We may assume that (the arcs of) T; is (form) a spanning tree
of D, since if it has v — 1 arcs and is not a spanning tree then if contains a
cycle and then by Theorem 12.2(i) the columns of P = B|T; are linearly
dependent and det(P) = 0. Let B; denote the basis matrix of the bond
space B corresponding to tree T;. Then by Exercise 12.1.2(b) of Bondy
and Murty’s Graph Theory with Applications, (B|T1)B; = B. Restricting
both sides of this equation to T (that is, to the columns corresponding to
the arcs in tree T), we obtain

((B[T1)B1)|T) = (B|T1)(B1|T) = B|T.
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Theorem 12.4. Let G be a graph and T a spanning tree of G. Let D be
any orientation of G and let B be the basis matrix of the bond space B

corresponding to T. The number of spanning trees of G is
7(G) = det(BB’), where B’ is the transpose of B.

Proof. By Hadley's Theorem and Equation (12.7) of Note 12.2.B, we have

det(BB) = )~

SCA,|S|=v—1

(det(BJS))>2.

By Theorem 12.2(i), the columns of B|S are linearly independent if and
only if S is acyclic (that is, if and only if the arcs of S determine an
orientation of a spanning tree of G).
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Theorem 12.4 (continued)

Theorem 12.4. Let G be a graph and T a spanning tree of G. Let D be
any orientation of G and let B be the basis matrix of the bond space B
corresponding to T. The number of spanning trees of G is

7(G) = det(BB’), where B’ is the transpose of B.

Proof (continued). The columns of a square matrix are linearly
independent if and only of the determinant of the matrix is nonzero (see
my online notes for Linear Algebra [MATH 2010] on Section 1.5. Inverses
of Matrices, and Linear Systems, Theorem 1.12 “Conditions for A1 to
Exist” and Section 4.2. The Determinant of a Square Matrix, Theorem 4.3,
“Determinant Criterion for Invertibility”) so the number of nonzero terms
in the sum is equal to the number of spanning trees, 7(G). By Theorem
12.3, B is unimodular, so each nonzero term in the sum is 1. Therefore,
the number of spanning trees in G is 7(G) = det(BB’), as claimed. O
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Corollary 12.4 (continued)

Proof (continued). Thus by Theorem 3.2.2 of Note 12.2.C,

e -oa %8 2] [ 8] an([ 2] 1w )

:det[g]det[B’ C’}:<det{g]>2,

since det(A) = det(A’) by Theorem 4.2.A, “Properties of the
Determinant” in my online Linear Algebra (MATH 2010) notes on Section
4.2. The Determinant of a Square Matrix. Notice that Bis (v — 1) x &

and Cis (¢ —v +1) X ¢, so that is € X € (square), as needed.

K

Taking square roots gives the desired result.
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Corollary 12.4. Let G be a graph and T a spanning tree of G. Let D be
any orientation of G, let B be the basis matrix of the bond space B
corresponding to T, and let C be the basis matrix of the cycle space C
corresponding to T. The number of spanning trees of G is

T(G):idet[g].

Proof. By Theorem 12.4 and Note 12.2.C we have
7(G) = det(BB’)det(CC’). By Theorem 3.1.G of Note 12.2.C we now
have

(7(G))? = det(BB')det(CC’) = det [ o c ]

0 CC
Since the bond space B and the cycle space C are orthogonal complements,

then BC' = CB’ = 0 (for example, notice that the (i, ) entry of BC' is
the dot product of the i row of B with the jth column of C’).
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