Graph Theory

Chapter 12. The Cycle Space and Bond Space

12.2. The Number of Spanning Trees—Proofs of Theorems

Graph Theory

December 22, 2022 1

1 / 8

()

Graph Theor

December 22, 2022

0.1.

Theorem 12.

Theorem 12.3 (continued)

Theorem 12.3. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T. Then \mathbf{B} is a unimodular matrix.

Proof (continued). ...

$$((B|T_1)B_1)|T) = (B|T_1)(B_1|T) = B|T.$$

Now $\mathbf{B}|T$ is an identity matrix by Note 12.1.F, so $\det(\mathbf{B}|T)=1$. Since the determinant of the product of two square matrices is the product of the determinants (see my online Linear Algebra [MATH 2010] notes on Section 4.2. The Determinant of a Square Matrix; notice Theorem 4.4, "The Multiplicative Property") then we have $\det(\mathbf{B}|T_1)\det(\mathbf{B}_1|T)=1$. Both matrices $\mathbf{B}|T_1$ and $\mathbf{B}_1|T$ have only integer entries, so the determinants are themselves integers. This implies $\det(\mathbf{B}|T_1)=\pm 1$, as claimed.

Theorem 12.3

Theorem 12.3

Theorem 12.3. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let B be the basis matrix of the bond space \mathcal{B} corresponding to T. Then B is a unimodular matrix.

Proof. Let \mathbf{P} be a submatrix of \mathbf{B} is size $(v-1)\times(v-1)$. Suppose that $\mathbf{P}=\mathbf{B}|T_1$. We may assume that (the arcs of) T_1 is (form) a spanning tree of D, since if it has v-1 arcs and is not a spanning tree then if contains a cycle and then by Theorem 12.2(i) the columns of $\mathbf{P}=\mathbf{B}|T_1$ are linearly dependent and $\det(\mathbf{P})=0$. Let \mathbf{B}_1 denote the basis matrix of the bond space \mathcal{B} corresponding to tree T_1 . Then by Exercise 12.1.2(b) of Bondy and Murty's *Graph Theory with Applications*, $(\mathbf{B}|T_1)\mathbf{B}_1=\mathbf{B}$. Restricting both sides of this equation to T (that is, to the columns corresponding to the arcs in tree T), we obtain

$$((B|T_1)B_1)|T) = (B|T_1)(B_1|T) = B|T.$$

.

Theorem 12.4

Theorem 12.4. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T. The number of spanning trees of G is $\tau(G) = \det(\mathbf{BB'})$, where $\mathbf{B'}$ is the transpose of \mathbf{B} .

Proof. By Hadley's Theorem and Equation (12.7) of Note 12.2.B, we have

$$\det(\mathbf{B}\mathbf{B}') = \sum_{S\subseteq A,\,|S|=
u-1} (\det(\mathbf{B}|S))^2.$$

By Theorem 12.2(i), the columns of $\mathbf{B}|S$ are linearly independent if and only if S is acyclic (that is, if and only if the arcs of S determine an orientation of a spanning tree of G).

 Graph Theory
 December 22, 2022
 4 / 8

 ()
 Graph Theory
 December 22, 2022
 5 /

Theorem 12.4 (continued)

Theorem 12.4. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let B be the basis matrix of the bond space \mathcal{B} corresponding to T. The number of spanning trees of G is $\tau(G) = \det(BB')$, where B' is the transpose of B.

Proof (continued). The columns of a square matrix are linearly independent if and only of the determinant of the matrix is nonzero (see my online notes for Linear Algebra [MATH 2010] on Section 1.5. Inverses of Matrices, and Linear Systems, Theorem 1.12 "Conditions for A^{-1} to Exist" and Section 4.2. The Determinant of a Square Matrix, Theorem 4.3, "Determinant Criterion for Invertibility") so the number of nonzero terms in the sum is equal to the number of spanning trees, $\tau(G)$. By Theorem 12.3, **B** is unimodular, so each nonzero term in the sum is 1. Therefore, the number of spanning trees in G is $\tau(G) = \det(\mathbf{BB'})$, as claimed.

Graph Theory

December 22, 2022 6

Graph Theory

December 22, 2022

Corollary 12.

Corollary 12.4 (continued)

Proof (continued). Thus by Theorem 3.2.2 of Note 12.2.C,

$$(\tau(G))^2 = \det \begin{bmatrix} \mathbf{B}\mathbf{B}' & \mathbf{0} \\ \mathbf{0} & \mathbf{C}\mathbf{C}' \end{bmatrix} = \begin{bmatrix} \mathbf{B}\mathbf{B}' & \mathbf{B}\mathbf{C}' \\ \mathbf{C}\mathbf{B}' & \mathbf{C}\mathbf{C}' \end{bmatrix} = \det \begin{bmatrix} \mathbf{B} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{B}' & \mathbf{C}' \end{bmatrix}$$

$$= \det \begin{bmatrix} \mathbf{B} \\ \mathbf{C} \end{bmatrix} \det \begin{bmatrix} \mathbf{B}' & \mathbf{C}' \end{bmatrix} = \left(\det \begin{bmatrix} \mathbf{B} \\ \mathbf{C} \end{bmatrix} \right)^2,$$

since $\det(\mathbf{A}) = \det(\mathbf{A}')$ by Theorem 4.2.A, "Properties of the Determinant" in my online Linear Algebra (MATH 2010) notes on Section 4.2. The Determinant of a Square Matrix. Notice that \mathbf{B} is $(\nu-1)\times\varepsilon$ and \mathbf{C} is $(\varepsilon-\nu+1)\times\varepsilon$, so that $\begin{bmatrix}\mathbf{B}\\\mathbf{C}\end{bmatrix}$ is $\varepsilon\times\varepsilon$ (square), as needed. Taking square roots gives the desired result.

Graph Theory December 22, 2022 8

Corollary 12.4

Corollary 12.4. Let G be a graph and T a spanning tree of G. Let D be any orientation of G, let $\mathbf B$ be the basis matrix of the bond space $\mathcal B$ corresponding to T, and let $\mathbf C$ be the basis matrix of the cycle space $\mathcal C$ corresponding to T. The number of spanning trees of G is $\tau(G)=\pm\det\begin{bmatrix}\mathbf B\\\mathbf C\end{bmatrix}$.

Proof. By Theorem 12.4 and Note 12.2.C we have $\tau(G) = \det(\mathbf{BB'})\det(\mathbf{CC'})$. By Theorem 3.1.G of Note 12.2.C we now have

$$(au(G))^2 = \det(\mathbf{B}\mathbf{B}')\det(\mathbf{C}\mathbf{C}') = \det\left[egin{array}{cc} \mathbf{B}\mathbf{B}' & \mathbf{0} \ \mathbf{0} & \mathbf{C}\mathbf{C}' \end{array}
ight].$$

Since the bond space \mathcal{B} and the cycle space \mathcal{C} are orthogonal complements, then $\mathbf{BC'} = \mathbf{CB'} = \mathbf{0}$ (for example, notice that the (i,j) entry of $\mathbf{BC'}$ is the dot product of the i row of \mathbf{B} with the jth column of $\mathbf{C'}$).