Graph Theory

Chapter 12. The Cycle Space and Bond Space 12.2. The Number of Spanning Trees-Proofs of Theorems

Table of contents

(1) Theorem 12.3
(2) Theorem 12.4
(3) Corollary 12.4

Theorem 12.3

Theorem 12.3. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T. Then \mathbf{B} is a unimodular matrix.

Proof. Let \mathbf{P} be a submatrix of \mathbf{B} is size $(v-1) \times(v-1)$. Suppose that $\mathbf{P}=\mathbf{B} \mid T_{1}$. We may assume that (the arcs of) T_{1} is (form) a spanning tree of D, since if it has $v-1$ arcs and is not a spanning tree then if contains a cycle and then by Theorem 12.2(i) the columns of $\mathbf{P}=\mathbf{B} \mid T_{1}$ are linearly dependent and $\operatorname{det}(\mathbf{P})=0$. Let \mathbf{B}_{1} denote the basis matrix of the bond space \mathcal{B} corresponding to tree T_{1}. Then by Exercise 12.1.2(b) of Bondy and Murty's Graph Theory with Applications, $\left(\mathbf{B} \mid T_{1}\right) \mathbf{B}_{1}=\mathbf{B}$. Restricting both sides of this equation to T (that is, to the columns corresponding to the arcs in tree T), we obtain

$$
\left.\left(\left(\mathbf{B} \mid T_{1}\right) \mathbf{B}_{1}\right) \mid T\right)=\left(\mathbf{B} \mid T_{1}\right)\left(\mathbf{B}_{1} \mid T\right)=\mathbf{B} \mid T .
$$

Theorem 12.3

Theorem 12.3. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T. Then \mathbf{B} is a unimodular matrix.

Proof. Let \mathbf{P} be a submatrix of \mathbf{B} is size $(v-1) \times(v-1)$. Suppose that $\mathbf{P}=\mathbf{B} \mid T_{1}$. We may assume that (the arcs of) T_{1} is (form) a spanning tree of D, since if it has $v-1$ arcs and is not a spanning tree then if contains a cycle and then by Theorem 12.2 (i) the columns of $\mathbf{P}=\mathbf{B} \mid T_{1}$ are linearly dependent and $\operatorname{det}(\mathbf{P})=0$. Let \mathbf{B}_{1} denote the basis matrix of the bond space \mathcal{B} corresponding to tree T_{1}. Then by Exercise 12.1.2(b) of Bondy and Murty's Graph Theory with Applications, $\left(\mathbf{B} \mid T_{1}\right) \mathbf{B}_{1}=\mathbf{B}$. Restricting both sides of this equation to T (that is, to the columns corresponding to the arcs in tree T), we obtain

$$
\left.\left(\left(\mathbf{B} \mid T_{1}\right) \mathbf{B}_{1}\right) \mid T\right)=\left(\mathbf{B} \mid T_{1}\right)\left(\mathbf{B}_{1} \mid T\right)=\mathbf{B} \mid T .
$$

Theorem 12.3 (continued)

Theorem 12.3. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T. Then \mathbf{B} is a unimodular matrix.

Proof (continued). . .

$$
\left.\left(\left(\mathbf{B} \mid T_{1}\right) \mathbf{B}_{1}\right) \mid T\right)=\left(\mathbf{B} \mid T_{1}\right)\left(\mathbf{B}_{1} \mid T\right)=\mathbf{B} \mid T .
$$

Now $\mathbf{B} \mid T$ is an identity matrix by Note 12.1.F, so $\operatorname{det}(\mathbf{B} \mid T)=1$. Since the determinant of the product of two square matrices is the product of the determinants (see my online Linear Algebra [MATH 2010] notes on Section 4.2. The Determinant of a Square Matrix; notice Theorem 4.4, "The Multiplicative Property") then we have $\operatorname{det}\left(\mathbf{B} \mid T_{1}\right) \operatorname{det}\left(\mathbf{B}_{1} \mid T\right)=1$. Both matrices $\mathbf{B} \mid T_{1}$ and $\mathbf{B}_{1} \mid T$ have only integer entries, so the determinants are themselves integers. This implies $\operatorname{det}\left(\mathbf{B} \mid T_{1}\right)= \pm 1$, as claimed.

Theorem 12.4

Theorem 12.4. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T. The number of spanning trees of G is $\tau(G)=\operatorname{det}\left(\mathbf{B B}^{\prime}\right)$, where \mathbf{B}^{\prime} is the transpose of \mathbf{B}.

Proof. By Hadley's Theorem and Equation (12.7) of Note 12.2.B, we have

By Theorem 12.2(i), the columns of $\mathbf{B} \mid S$ are linearly independent if and only if S is acyclic (that is, if and only if the arcs of S determine an orientation of a spanning tree of G).

Theorem 12.4

Theorem 12.4. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T. The number of spanning trees of G is $\tau(G)=\operatorname{det}\left(\mathbf{B B}^{\prime}\right)$, where \mathbf{B}^{\prime} is the transpose of \mathbf{B}.

Proof. By Hadley's Theorem and Equation (12.7) of Note 12.2.B, we have

$$
\operatorname{det}\left(\mathbf{B} \mathbf{B}^{\prime}\right)=\sum_{S \subseteq A,|S|=\nu-1}(\operatorname{det}(\mathbf{B} \mid S))^{2}
$$

By Theorem 12.2(i), the columns of $\mathbf{B} \mid S$ are linearly independent if and only if S is acyclic (that is, if and only if the arcs of S determine an orientation of a spanning tree of G).

Theorem 12.4 (continued)

Theorem 12.4. Let G be a graph and T a spanning tree of G. Let D be any orientation of G and let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T. The number of spanning trees of G is $\tau(G)=\operatorname{det}\left(\mathbf{B B}^{\prime}\right)$, where \mathbf{B}^{\prime} is the transpose of \mathbf{B}.

Proof (continued). The columns of a square matrix are linearly independent if and only of the determinant of the matrix is nonzero (see my online notes for Linear Algebra [MATH 2010] on Section 1.5. Inverses of Matrices, and Linear Systems, Theorem 1.12 "Conditions for A^{-1} to Exist" and Section 4.2. The Determinant of a Square Matrix, Theorem 4.3, "Determinant Criterion for Invertibility") so the number of nonzero terms in the sum is equal to the number of spanning trees, $\tau(G)$. By Theorem 12.3, \mathbf{B} is unimodular, so each nonzero term in the sum is 1 . Therefore, the number of spanning trees in G is $\tau(G)=\operatorname{det}\left(\mathbf{B B}^{\prime}\right)$, as claimed.

Corollary 12.4

Corollary 12.4. Let G be a graph and T a spanning tree of G. Let D be any orientation of G, let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T, and let \mathbf{C} be the basis matrix of the cycle space \mathcal{C} corresponding to T. The number of spanning trees of G is $\tau(G)= \pm \operatorname{det}\left[\begin{array}{l}\mathbf{B} \\ \mathbf{C}\end{array}\right]$.

Proof. By Theorem 12.4 and Note 12.2.C we have $\tau(G)=\operatorname{det}\left(\mathbf{B B}^{\prime}\right) \operatorname{det}\left(\mathbf{C C}^{\prime}\right)$. By Theorem 3.1.G of Note 12.2.C we now have

$$
(\tau(G))^{2}=\operatorname{det}\left(\mathbf{B B}^{\prime}\right) \operatorname{det}\left(\mathbf{C C ^ { \prime }}\right)=\operatorname{det}\left[\begin{array}{cc}
\mathbf{B B}^{\prime} & 0 \\
0 & \mathbf{C C}^{\prime}
\end{array}\right]
$$

Since the bond space \mathcal{B} and the cycle space \mathcal{C} are orthogonal complements, then $\mathbf{B C}^{\prime}=\mathbf{C B}^{\prime}=\mathbf{0}$ (for example, notice that the (i, j) entry of $\mathbf{B C}^{\prime}$ is the dot product of the i row of \mathbf{B} with the j th column of $\left.\mathbf{C}^{\prime}\right)$.

Corollary 12.4

Corollary 12.4. Let G be a graph and T a spanning tree of G. Let D be any orientation of G, let \mathbf{B} be the basis matrix of the bond space \mathcal{B} corresponding to T, and let \mathbf{C} be the basis matrix of the cycle space \mathcal{C} corresponding to T. The number of spanning trees of G is $\tau(G)= \pm \operatorname{det}\left[\begin{array}{l}\mathbf{B} \\ \mathbf{C}\end{array}\right]$.

Proof. By Theorem 12.4 and Note 12.2.C we have $\tau(G)=\operatorname{det}\left(\mathbf{B B}^{\prime}\right) \operatorname{det}\left(\mathbf{C C}^{\prime}\right)$. By Theorem 3.1.G of Note 12.2.C we now have

$$
(\tau(G))^{2}=\operatorname{det}\left(\mathbf{B B}^{\prime}\right) \operatorname{det}\left(\mathbf{C C}^{\prime}\right)=\operatorname{det}\left[\begin{array}{cc}
\mathbf{B B}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{C C}^{\prime}
\end{array}\right] .
$$

Since the bond space \mathcal{B} and the cycle space \mathcal{C} are orthogonal complements, then $\mathbf{B C}^{\prime}=\mathbf{C B}^{\prime}=\mathbf{0}$ (for example, notice that the (i, j) entry of $\mathbf{B C}^{\prime}$ is the dot product of the i row of \mathbf{B} with the j th column of \mathbf{C}^{\prime}).

Corollary 12.4 (continued)

Proof (continued). Thus by Theorem 3.2.2 of Note 12.2.C,

$$
\begin{gathered}
(\tau(G))^{2}=\operatorname{det}\left[\begin{array}{cc}
\mathbf{B B}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{C} \mathbf{C}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{B B}^{\prime} & \mathbf{B C}^{\prime} \\
\mathbf{C B}^{\prime} & \mathbf{C C}^{\prime}
\end{array}\right]=\operatorname{det}\left(\left[\begin{array}{l}
\mathbf{B} \\
\mathbf{C}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{B}^{\prime} & \mathbf{C}^{\prime}
\end{array}\right]\right) \\
=\operatorname{det}\left[\begin{array}{l}
\mathbf{B} \\
\mathbf{C}
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
\mathbf{B}^{\prime} & \mathbf{C}^{\prime}
\end{array}\right]=\left(\operatorname{det}\left[\begin{array}{l}
\mathbf{B} \\
\mathbf{C}
\end{array}\right]\right)^{2},
\end{gathered}
$$

since $\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}^{\prime}\right)$ by Theorem 4.2.A, "Properties of the Determinant" in my online Linear Algebra (MATH 2010) notes on Section 4.2. The Determinant of a Square Matrix. Notice that \mathbf{B} is $(\nu-1) \times \varepsilon$ and \mathbf{C} is $(\varepsilon-\nu+1) \times \varepsilon$, so that $\left[\begin{array}{l}\mathbf{B} \\ \mathbf{C}\end{array}\right]$ is $\varepsilon \times \varepsilon$ (square), as needed.
Taking square roots gives the desired result.

