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Theorem 12.3

Theorem 12.3

Theorem 12.3. Let G be a graph and T a spanning tree of G . Let D be
any orientation of G and let B be the basis matrix of the bond space B
corresponding to T . Then B is a unimodular matrix.

Proof. Let P be a submatrix of B is size (v − 1)× (v − 1). Suppose that
P = B|T1. We may assume that (the arcs of) T1 is (form) a spanning tree
of D, since if it has v − 1 arcs and is not a spanning tree then if contains a
cycle and then by Theorem 12.2(i) the columns of P = B|T1 are linearly
dependent and det(P) = 0. Let B1 denote the basis matrix of the bond
space B corresponding to tree T1. Then by Exercise 12.1.2(b) of Bondy
and Murty’s Graph Theory with Applications, (B|T1)B1 = B. Restricting
both sides of this equation to T (that is, to the columns corresponding to
the arcs in tree T ), we obtain

((B|T1)B1)|T ) = (B|T1)(B1|T ) = B|T .
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Theorem 12.3

Theorem 12.3 (continued)

Theorem 12.3. Let G be a graph and T a spanning tree of G . Let D be
any orientation of G and let B be the basis matrix of the bond space B
corresponding to T . Then B is a unimodular matrix.

Proof (continued). . . .

((B|T1)B1)|T ) = (B|T1)(B1|T ) = B|T .

Now B|T is an identity matrix by Note 12.1.F, so det(B|T ) = 1. Since the
determinant of the product of two square matrices is the product of the
determinants (see my online Linear Algebra [MATH 2010] notes on Section
4.2. The Determinant of a Square Matrix; notice Theorem 4.4, “The
Multiplicative Property”) then we have det(B|T1)det(B1|T ) = 1. Both
matrices B|T1 and B1|T have only integer entries, so the determinants are
themselves integers. This implies det(B|T1) = ±1, as claimed.
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Theorem 12.4

Theorem 12.4. Let G be a graph and T a spanning tree of G . Let D be
any orientation of G and let B be the basis matrix of the bond space B
corresponding to T . The number of spanning trees of G is
τ(G ) = det(BB′), where B′ is the transpose of B.

Proof. By Hadley’s Theorem and Equation (12.7) of Note 12.2.B, we have

det(BB′) =
∑

S⊆A, |S |=ν−1

(det(B|S))2.

By Theorem 12.2(i), the columns of B|S are linearly independent if and
only if S is acyclic (that is, if and only if the arcs of S determine an
orientation of a spanning tree of G ).
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Theorem 12.4

Theorem 12.4 (continued)

Theorem 12.4. Let G be a graph and T a spanning tree of G . Let D be
any orientation of G and let B be the basis matrix of the bond space B
corresponding to T . The number of spanning trees of G is
τ(G ) = det(BB′), where B′ is the transpose of B.

Proof (continued). The columns of a square matrix are linearly
independent if and only of the determinant of the matrix is nonzero (see
my online notes for Linear Algebra [MATH 2010] on Section 1.5. Inverses
of Matrices, and Linear Systems, Theorem 1.12 “Conditions for A−1 to
Exist” and Section 4.2. The Determinant of a Square Matrix, Theorem 4.3,
“Determinant Criterion for Invertibility”) so the number of nonzero terms
in the sum is equal to the number of spanning trees, τ(G ). By Theorem
12.3, B is unimodular, so each nonzero term in the sum is 1. Therefore,
the number of spanning trees in G is τ(G ) = det(BB′), as claimed.
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Corollary 12.4

Corollary 12.4. Let G be a graph and T a spanning tree of G . Let D be
any orientation of G , let B be the basis matrix of the bond space B
corresponding to T , and let C be the basis matrix of the cycle space C
corresponding to T . The number of spanning trees of G is

τ(G ) = ±det

[
B
C

]
.

Proof. By Theorem 12.4 and Note 12.2.C we have
τ(G ) = det(BB′)det(CC′). By Theorem 3.1.G of Note 12.2.C we now
have

(τ(G ))2 = det(BB′)det(CC′) = det

[
BB′ 0
0 CC′

]
.

Since the bond space B and the cycle space C are orthogonal complements,
then BC′ = CB′ = 0 (for example, notice that the (i , j) entry of BC′ is
the dot product of the i row of B with the jth column of C′).
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Corollary 12.4

Corollary 12.4 (continued)

Proof (continued). Thus by Theorem 3.2.2 of Note 12.2.C,

(τ(G ))2 = det

[
BB′ 0
0 CC′

]
=

[
BB′ BC′

CB′ CC′

]
= det

([
B
C

] [
B′ C′ ])

= det

[
B
C

]
det

[
B′ C′ ]

=

(
det

[
B
C

])2

,

since det(A) = det(A′) by Theorem 4.2.A, “Properties of the
Determinant” in my online Linear Algebra (MATH 2010) notes on Section
4.2. The Determinant of a Square Matrix. Notice that B is (ν − 1)× ε

and C is (ε− ν + 1)× ε, so that

[
B
C

]
is ε× ε (square), as needed.

Taking square roots gives the desired result.
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