Graph Theory

Chapter 1. Graphs

1.6. Johnson Graphs—Proofs of Theorems

Table of contents

Lemma 1.6.1

Lemma 1.6.2

2 / 4

Lemma 1.6.1. If $v \ge k \ge i$, then $J(v, k, i) \cong J(v, v - k, v - 2k + i)$.

Proof. Let g be the bijection mapping subsets of Ω of size k to subsets of Ω of size v-k defined as $g(X)=\Omega\setminus X=X^c$ (so that g maps a k-set to its complement in Ω). If $X_1\sim X_2$ in J(v,k,i) then $|X_1\cap X_2|=i$ (by definition). So

$$(\Omega \setminus X_1) \cap (\Omega \setminus X_2) = X_1^c \cap X_2^c = (X_1 \cup X_2)^c$$
 by de Morgan's Law
$$= \Omega \setminus (X_1 \cup X_2),$$

and so
$$|X_1^c \cap X_2^c| = |(\Omega \setminus X_1) \cap (\Omega \setminus X_2)| = |\Omega \setminus (X_1 \cup X_2)|$$

= $|\Omega| - (k + k - i) = v - 2k + i$. Therefore, $X_1^c \sim X_2^c$ in $J(v, v - k, x - 2k + i)$.

Lemma 1.6.1. If $v \ge k \ge i$, then $J(v, k, i) \cong J(v, v - k, v - 2k + i)$.

Proof. Let g be the bijection mapping subsets of Ω of size k to subsets of Ω of size v-k defined as $g(X)=\Omega\setminus X=X^c$ (so that g maps a k-set to its complement in Ω). If $X_1\sim X_2$ in J(v,k,i) then $|X_1\cap X_2|=i$ (by definition). So

$$(\Omega \setminus X_1) \cap (\Omega \setminus X_2) = X_1^c \cap X_2^c = (X_1 \cup X_2)^c$$
 by de Morgan's Law
$$= \Omega \setminus (X_1 \cup X_2),$$

and so $|X_1^c \cap X_2^c| = |(\Omega \setminus X_1) \cap (\Omega \setminus X_2)| = |\Omega \setminus (X_1 \cup X_2)|$ = $|\Omega| - (k+k-i) = v - 2k + i$. Therefore, $X_1^c \sim X_2^c$ in J(v,v-k,x-2k+i). If $X_1 \not\sim X_2$ in J(v,k,i) then $|X_1 \cap X_2| \neq i$ and $|X_1^c \cap X_2^c| = v - |X_1 \cup X_2| \neq v - (k+k-i) = v - 2k + 1$. Therefore $X_1^c \not\sim X_2^c$ in J(v,v-k,v-2k+1). Hence, g is an isomorphism and $J(v,k,i) \cong J(v,v-k,v-2k+i)$, as claimed.

Lemma 1.6.1. If $v \ge k \ge i$, then $J(v, k, i) \cong J(v, v - k, v - 2k + i)$.

Proof. Let g be the bijection mapping subsets of Ω of size k to subsets of Ω of size v-k defined as $g(X)=\Omega\setminus X=X^c$ (so that g maps a k-set to its complement in Ω). If $X_1\sim X_2$ in J(v,k,i) then $|X_1\cap X_2|=i$ (by definition). So

$$(\Omega \setminus X_1) \cap (\Omega \setminus X_2) = X_1^c \cap X_2^c = (X_1 \cup X_2)^c$$
 by de Morgan's Law
$$= \Omega \setminus (X_1 \cup X_2),$$

and so $|X_1^c \cap X_2^c| = |(\Omega \setminus X_1) \cap (\Omega \setminus X_2)| = |\Omega \setminus (X_1 \cup X_2)|$ $= |\Omega| - (k+k-i) = v - 2k + i$. Therefore, $X_1^c \sim X_2^c$ in J(v,v-k,x-2k+i). If $X_1 \not\sim X_2$ in J(v,k,i) then $|X_1 \cap X_2| \neq i$ and $|X_1^c \cap X_2^c| = v - |X_1 \cup X_2| \neq v - (k+k-i) = v - 2k + 1$. Therefore $X_1^c \not\sim X_2^c$ in J(v,v-k,v-2k+1). Hence, g is an isomorphism and $J(v,k,i) \cong J(v,v-k,v-2k+i)$, as claimed.

Lemma 1.6.2. If $v \ge k \ge i$, then $\operatorname{Aut}(J(v, k, i))$ contains a subgroup isomorphic to $\operatorname{Sym}(v)$.

Proof. Let g be any permutation of Ω (i.e, $g \in \operatorname{Sym}(v)$). Then g is a bijection on Ω and so $|S \cap T| = |S^g \cap T^g|$ for all $S, T \subseteq \Omega$. Therefore $X_1 \sim X_2$ in J(v,k,i) if and only if $X_1^g \sim X_2^g$ in J(v,k,i) and so g is an automorphism of J(v,k,i). Since g is an arbitrary permutation of Ω (where $|\Omega| = v$) then the group of all permutations of Ω (a group isomorphic to the symmetry group $\operatorname{Sym}(v)$) are in $\operatorname{Aut}(J(v,k,i))$. That is, $\operatorname{Aut}(J(v,k,i))$ contains a subgroup isomorphic to $\operatorname{Sym}(v)$, as claimed. \square

Graph Theory September 12, 2022

4 / 4

Lemma 1.6.2. If $v \ge k \ge i$, then $\operatorname{Aut}(J(v, k, i))$ contains a subgroup isomorphic to $\operatorname{Sym}(v)$.

Proof. Let g be any permutation of Ω (i.e, $g \in \operatorname{Sym}(v)$). Then g is a bijection on Ω and so $|S \cap T| = |S^g \cap T^g|$ for all $S, T \subseteq \Omega$. Therefore $X_1 \sim X_2$ in J(v,k,i) if and only if $X_1^g \sim X_2^g$ in J(v,k,i) and so g is an automorphism of J(v,k,i). Since g is an arbitrary permutation of Ω (where $|\Omega| = v$) then the group of all permutations of Ω (a group isomorphic to the symmetry group $\operatorname{Sym}(v)$) are in $\operatorname{Aut}(J(v,k,i))$. That is, $\operatorname{Aut}(J(v,k,i))$ contains a subgroup isomorphic to $\operatorname{Sym}(v)$, as claimed. \square

Graph Theory September 12, 2022