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Chapter 1. Introduction
1.2. Trees and Bipartite Graphs—Proofs of Theorems
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Proposition 1.2.1

Proposition 1.2.1

Proposition 1.2.1. Let T be a graph of order n. Then the following are
equivalent.

(i) T is a tree.

(ii) T is connected and has n − 1 edges.

(iii) T contains no cycles and has n − 1 edges.

(iv) T is connected but every edge-deletion results in a
disconnected graph.

(v) T contains no cycles but every edge addition results in a
graph with a cycle.

(vi) Any two vertices in T are connected by exactly one path.

Proof. Bondy and Murty’s Exercise 4.1.2 shows that (i), (ii), and (iii) are
equivalent. Their Proposition 4.1 shows that (i) and (vi).
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Proposition 1.2.1

Proposition 1.2.1 (continued 1)

Proof (continued). (vi) ⇒ (i). Suppose any two vertices in T are
connected by exactly one path. Then by Mohar and Thomassen’s
definition of “connected,” T is connected. ASSUME T contains a cycle
v0, v1, . . . , vn−1 with v1 and vj adjacent if and only if either i ≡ j (mod n)
or j ≡ i (mod n) (since T is simple, n ≥ 2), then there are two paths
between v0 and v1, namely edge v0v1 and path v1, v2, . . . , vn−1, v0. But
this is a CONTRADICTION to the hypothesis that T contains only one
path between any two give vertices. So T contains no cycles and hence T
is a tree.

(i) ⇒ (v). Suppose T is a tree. Then, by the definition of “tree,” T is
connected. Let u, v ∈ V (T ) where uv 6∈ E (T ). Then condition (vi) holds
and there is exactly one path between u and v . If we add edge uv then
the path between u and v union with edge uv to give a cycle. Since u and
v are arbitrary non-adjacent vertices in T , then addition of any edge to T
results in a graph with a cycle, as claimed.
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Proposition 1.2.1

Proposition 1.2.1 (continued 2)

Proof (continued). (v) ⇒ (i). Suppose T contains no cycles but that
every edge addition results in a graph with a cycle. ASSUME T is not
connected. Then by Mohar and Thomassen’s definition of connected,
there are u, v ∈ V (T ) such that there is not path between u and v in T .
Then the addition of edge uv to T does not result in a graph with a cycle
(for if edge uv is in some cycle C in the graph, then C − uv is a path in T
between vertices u and v). But this CONTRADICTS the hypotheses. So
the assumption that T is not connected is false, and hence T is a
connected graph with no cycles. That is, T is a tree, as claimed.

(i) ⇒ (iv). Suppose T is a tree. Then, by the definition of “tree,” T is
connected. Let uv be an edge of T . Then condition (vi) holds and there is
exactly one path between u and v and it must be the edge uv . So if edge
uv is deleted from T then there is no path between u and v in the
resulting graph and by Mohar and Thomassen’s definition of “connected,”
the resulting graph is not connected. Since uv is an arbitrary edge of T
then any deletion of an edge of T results in a disconnected graph. �

() Graph Theory September 9, 2020 5 / 5



Proposition 1.2.1

Proposition 1.2.1 (continued 2)
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