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Chapter 1. Graphs

Section 1.1. Graphs and Their Representations

Note. In this section, we lay down some basic definitions and notation. We largely

follow a definition/theorem/proof approach. Bondy and Murty present definitions

in the “conversational” parts of the text.

Definition. A graph G is an ordered pair (V (G), E(G)) where V (G) is a set whose

elements are called vertices (V (G) is called the vertex set) and E(G) is a set disjoint

from V (G) whose elements are called edges (E(G) is called the edge set), together

with an incidence function ψG that associates with each edge of G an unordered

pair of (not necessarily different) vertices u and v, denoted {u, v} = {v, u}. If

e ∈ E(G) and ψG(e) = {u, v} then edge e is said to join u and v, and the vertices

u and v are called the ends of e. The order of graph G, denoted v(G), is the

cardinality of the vertex set |V (G)| (most often, taken to be finite). The size of

graph G, denoted e(G), is the cardinality of the edge set |E(G)| (also usually taken

to be finite).

Note. Unless stated otherwise, we consider graphs to be of finite size and

finite order! We adopt the standard notation n = v(G) and m = e(G). We

usually denote edge {u, v} simply as uv. Notice that an edge where both ends are

vertex v is denoted {v, v} = vv, even though in a set elements are not repeated

(so “{u, v}” does not technically denote, in general, the set consisting of elements

u and v unless u and v are distinct).
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Example 1.1.1. Let G = (V (G), E(G)) where V (G) = {u, v, w, x, y}, E(G) =

{a, b, c, d, e, f, g, h}, and ψG is defined by

ψG(a) = uv, ψG(b) = uu, ψG(c) = vw, ψG(d) = wx,

ψG(e) = vx, ψG(f) = wx, ψG(g) = ux, ψG(h) = xy.

Then the order of G is v(G) = |V (G)| = 5 and the size of G is E(G) = |E(G)| = 8.

Note. We graphically represent a graph (Bondy and Murty state that this is why

graphs are called “graphs”—see page 2) by representing vertices as little circles

or disks and representing edges by joining the ends of the edge with some curve.

Figure 1.1(a) gives such a graphical representation (or “drawing”) of the graph of

Example 1.1.1.

Figure 1.1(a)

Since the vertices have no particular location and the curves representing the edges

have no particular shape, then there are multiple ways to represent a graph with a

drawing (we do follow the convention that no curve representing an edge contains

any vertices other than its ends, and no edge intersects itself except that a loop

intersects itself at its ends).
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Definition. In graph G with e ∈ E(G) where ψG(e) = {u, v} we say that vertices

u and v are incident with edge e and edge e is incident with vertices u and v. Two

vertices which are incident with a common edge are adjacent and two adjacent

vertices are neighbors. The set of neighbors of vertex v in graph G is denoted

NG(v). Also, two edges which are incident with a common vertex are adjacent. An

edge with identical ends is called a loop and an edge with distinct ends is called a

link. Two or more links with the same pair of ends are parallel edges. A graph is

finite if both its vertex set and edge set are finite. A graph is simple if it has no

loops and no parallel edges.

Note. The graph in Example 1.1.1 and Figure 1.1(a) has edge b as a loop, and

edges d and f are parallel edges. So this graph is not simple! We are primarily

concerned with finite simple graphs.

Definition. The graph with no vertices and no edges is the null graph. A graph

with one vertex is a trivial graph. Graphs other than the null graph and the trivial

graphs are nontrivial graphs.

Note 1.1.A. We’ll often abbreviate a simple graph as (V,E) where V is the vertex

set and E is a set of two-element subsets of V . In this way we can gloss over the

incidence function ψ. In drawings, we’ll label the vertices and not the edges but

will refer to an edge with ends u and v simply as uv.
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Definition. A complete graph is a simple graph in which every pair of distinct

vertices are adjacent. An empty graph is a graph with no edges. A graph is bipartite

if its vertex set can be partitioned into two subsets X and Y so that every edge

has one end in X and one end in Y ; the pair of sets (X, Y ) is the bipartition of the

bipartite graph and X and Y are its parts. A bipartite graph G with bipartition

(X, Y ) is denoted G[X, Y ]. If G[X, Y ] is simple and every vertex in X is joined

to every vertex in Y , then G is a complete bipartite graph. A star is a complete

bipartite graph G[X, Y ] with |X| = 1 or |Y | = 1.

Definition. Let G be a simple graph. The complement G of G is the simple graph

whose vertex set is V and whose edges are the pairs of nonadjacent vertices of G.

Note. In Theorem 4.7, it is shown that a graph is bipartite if and only if it contains

no odd cycle.

Note. Drawings of a complete graph, a complete bipartite graph, and a star are

given in Figure 1.2, parts (a), (b), and (c), respectively.

Figure 1.2



1.1. Graphs and Their Representations 5

Definition. A path is a simple graph whose vertices can be arranged in a linear

sequence, say v1, v2, . . . , vn, where vi and vj are adjacent if and only if either i = j+1

or j = i+1 (this means that the vertices and edges of a path are distinct). A cycle

on three or more vertices is a simple graph whose vertices can be arranged as

v0, v1, . . . , vn−1, where vi and vj are adjacent if and only if either i ≡ j + 1 (mod

n) or j ≡ i + 1 (mod n); a cycle on one vertex consists of a single vertex with a

loop, and a cycle on two vertices consists of two vertices joined by a pair of parallel

edges. The length of a path or a cycle is the number of edges, and a path or cycle

of length k is called a k-path or a k-cycle, respectively. The parity (even or odd) of

a k-path or k-cycle is the parity of k.

Note. In keeping with geometric intuition, a 3-cycle is called a triangle, a 4-cycle

a square, a 5-cycle a pentagon, and so forth.

Note 1.1.B. Recall that, in the setting of R, a set A of real numbers has a separa-

tion if there are open sets U and V with U ∩ V = ∅, U ∩A 6= ∅, V ∩A 6= ∅, and

(U ∩ A) ∪ (V ∩ A) = A. If there is no separation of A then set A is connected (see

my online Analysis 1 [MATH 4217/5217] on 3.1. Topology of the Real Numbers).

A similar idea holds in topological spaces (see my online notes for Introduction

to Topology [MATH 4357/5357] on 3.23. Connected Spaces). We use this same

concept in defining a connected graph.

Definition. A graph is connected if for every partition of its vertex set into two

nonempty sets X and Y , there is an edge with one end in X and one end in Y ;

otherwise the graph is disconnected.

http://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-23.pdf
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Note. If a graph is disconnected because there exists a partition of the vertex set

into sets X and Y for which there is no edge with one end in set X and the other

end in a set Y , then the sets X and Y form a “separation” of the graph, similar to

the topological concept (we should be careful with the use of the term “separation”

here, since in Section 5.2, “Separations and Blocks,” we will define a separation

of a connected graph, which is a very different concept). Connectivity (and the

“degree” of connectivity) is the topic of Chapter 9. In Exercise 3.1.4 it is to be

shown that a graph G is connected if and only if for any two nonempty subsets X

and Y of V (G), there is a path v1, v2, . . . , vn in G such that v1 ∈ X and vn ∈ Y . In

particular, for any two vertices of a connected graph, there is a path in the graph

between them.

Note. We have not formally defined a “drawing” of a graph, making it impossible

to formally define a planar graph. So we intuitively define a planar graph as a

graph that can be drawn in the Cartesian plane in such a way that edges meet

only at points corresponding to their common ends. Such a drawing is called a

planar embedding of the graph. For example, the graph in Figure 1.1(a) is planar—

we can “move” loop b and edge h so that they do not intersect any other edges,

thus producing a planar embedding of that graph. The graphs in Figure 1.2(a) and

1.2(b) are not planar (as shown in Theorem 10.2 and Exercise 10.1.1(b), and again

in Corollaries 10.23 and 10.24; see also Kuratowski’s Theorem, Theorem 10.30).

Graphs can also be embedded on surfaces other then the Cartesian plane. This

idea is explained some in Chapter 2 and in more detail in Chapter 10.

Note. A drawing of a graph is an good way to visualize the graph (if it isn’t too

big). Another way to present a graph is to tabulate the connectivity in an array.
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Definition. Let G be a graph with vertex set V and edge set E. The incidence

matrix of G is the n ×m matrix (where n = v(G) and m = e(G)) MG = (mve),

where mve is the number of times (0, 1, or 2) that vertex v and edge e are incident.

The adjacency matrix of G is the n × n matrix (where n = v(G)) AG = (auv),

where auv is the number of edges joining vertices u and v, each loop counting as

two edges.

Note. The graph of Figure 1.1(a) is given again in Figure 1.5, along with the

incidence and adjacency matrix. Notice that the adjacency matrix is symmetric.

Figure 1.5

Definition. Let G be a simple finite graph. A list (N(v) | v ∈ V ) = N(v1), N(v2),

. . . , N(vn) of the neighbors of the vertices is an adjacency list of G. Suppose

G[X, Y ] is a bipartite graph, where X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys}.

The bipartite adjacency matrix of G is the r× s matrix BG = (bij), where bij is the

number of edges joining xi and yj.
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Note. We now turn our attention to the “degree” of vertices in a graph and present

our first theorems.

Definition. The degree of a vertex v in a finite graph G, denoted dG(v), is the

number of edges of G incident with v, each loop counting as two edges. A vertex

of degree zero is called an isolated vertex. The minimum of the degrees of vertices

in graph G is denoted δ(G), and the maximum of the degrees of vertices in (finite)

graph G is denoted ∆(G). The average of the degrees is d(G) = 1
n

∑
v∈V d(v) where

n = |V | <∞.

Note. The earliest known paper on graph theory is by Leonard Euler: “Solutio

problematis ad geometriam situs pertinentis” (The Solution of a Problem Relat-

ing to the Geometry of Position), Commentarii Academiae Scientiarum Imperialis

Petropolitanae 8 (1736), 128-140. A translation of Euler’s foundational paper is in

N.L. Biggs, E.K. Lloyd, and R.J. Wilson’s Graph Theory: 1736–1936, 2nd edition

(NY: Clarendon Press, 1986) in Chapter 1, “Paths,” on pages 3 to 8. In it he con-

sidered the “Bridges of Königsberg Problem” (see also Section 3.4 of these online

notes) and proved the following two results.

Theorem 1.1. For any graph G,
∑

v∈V d(v) = 2m where m = |E|.

Corollary 1.2. In any graph, the number of vertices of odd degree is even.
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Note. Theorem 1.1 is sometimes called “The Handshaking Lemma” since it implies

that in a group of people, an even number of people must have shaken the hands of

an odd number of other people (this observation is more explicitly Corollary 1.2).

Definition. A graph G is k-regular if d(v) = k for all v ∈ V . A regular graph is

one that is k-regular for some k.

Note. You will characterize k-regular graphs for k = 0, 1, 2 in Exercise 1.1.5. The

3-regular graphs are called cubic graphs.

Proposition 1.3. Let G[X, Y ] be a bipartite graph without isolated vertices such

that d(x) ≥ d(y) for all xy ∈ E where x ∈ X and y ∈ Y . Then |X| ≤ |Y |, with

equality if and only if d(x) = d(y) for all xy ∈ E.
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