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Section 1.2. Isomorphisms and Automorphisms

Note. In this section we define a graph isomorphism, consider automorphisms and

symmetries of a given graph, and define a labeled simple graph.

Definition. Graphs G and H are isomorphic, denoted G ∼= H, if there are bijec-

tions θ : V (G) → V (H) and ϕ : E(G) → E(H) such that ψG(e) = uv if and only if

ψH(ϕ(e)) = θ(u)θ(v). The mappings θ and ϕ are an isomorphism between G and

H.

Note. Figure 1.6 gives drawings of graphs G and H (with two drawings of H).

Graphs G and H are isomorphic where (in a notation of a mapping similar to that

given in Introduction to Modern Algebra [MATH 4127/5127] when dealing with

permutations, see my online notes on II.8. Groups of Permutations):

θ =

 a b c d

w z y x

 and ϕ =

 e1 e2 e3 e4 e5 e6

f3 f4 f1 f6 f5 f2

 .

Figure 1.6

http://faculty.etsu.edu/gardnerr/4127/notes/II-8.pdf
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Note. Since θ and ϕ are bijections, then isomorphic graphs have the same number

of vertices and edges (i.e., have the same order and size). Since two drawings of

isomorphic graphs could be translated from one to the other (by renaming the edges

and vertices) we often present an unlabeled drawing with the understanding that

it represents an equivalence class of isomorphic graphs (since graph isomorphism

is an equivalence relation).

Note. A complete graph on n vertices is denoted Kn. A complete bipartite graph,

with partite sets consisting of m elements and n elements, is denoted Km,n. A path

on n vertices is denoted Pn and a cycle on n vertices is denoted Cn.

Note. Technically, Kn, Km,n, Pn, and Cn each denote equivalence classes of graphs

(for given m,n ∈ N), but we may informally refer to “the complete graph Kn”

(for example) with the understanding that this represents all graphs isomorphic to

some complete graph on n vertices.

Note. It can be difficult to determine if two graphs are isomorphic or not (in

particular, if they are “large”); see Bondy and Murty’s discussion on pages 14 and

15. E. M. Luks, “employing powerful group theoretic methods” gave an efficient

isomorphism-testing algorithm for graphs of bounded maximum degree in “Isomor-

phisms of Graphs of Bounded Valence can be Tested in Polynomial Time,” Journal

of Computational System Science 25(1) (1982), 42–65 (available online from the

index of volume 25 issue 1 where there is a link to a downloadable PDF of the

paper; accessed 2/20/2020).

https://www.sciencedirect.com/journal/journal-of-computer-and-system-sciences/vol/25/issue/1
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Note. In a simple graph G where the incidence function ψG is one to one (this

is shown as part of the solution to Exercise 1.1.1), an edge is uniquely determined

by the unordered pair of distinct vertices which are its ends. So an isomorphism

between simple graphs can be determined from the mapping of the vertex sets,

θ. This is the case in Mohar and Thomassen’s book Graphs on Surfaces (Johns

Hopkins University Press, 2001) which we use as a supplement when considering

topological graph theory. See their 1.1. Basic Definitions for their approach to

isomorphisms.

Definition. An automorphism of a graph is an isomorphism of the graph with

itself. For vertices u and v in a simple graph G, if there is an automorphism of

G with θ : V (G) → V (G), such that θ(u) = v then vertices u and v are called

similar. Simple graphs in which all vertices are similar are vertex-transitive graphs.

Graphs in which no two vertices are similar are asymmetric graphs (and the only

automorphism is the identity mapping).

Note. The complete graph Kn is clearly vertex transitive (since every one of the

n! mappings of V (Kn) onto V (Kn) is an automorphism).

Note 1.2.A. Drawings can help illustrate symmetries of a graph. Three drawings

of the Petersen graph are given in Figure 1.9. The first drawing reveals a “rotational

symmetry” in the five vertices of the inner pentagon and the five vertices of the outer

pentagon. The third drawing reveals a similarity of the outer six vertices (through a

“reflection” or “rotation”). The combination of these observations imply that there

are automorphisms mapping any vertex of the Petersen graph to any other vertex

https://faculty.etsu.edu/gardnerr/5340/notes-Mohar-Thomassen/Mohar-GT-1-1.pdf
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of the Petersen graph; that is, the Petersen graph is vertex-transitive (in the two

pentagons the vertices are similar and in the six cycle the vertices are similar, so it

must be that at least one of the vertices in the outer pentagon is similar to at least

one of the vertices of the inner pentagon and hence all vertices are similar because

similarity is an equivalence relation, which is to be shown in Exercise 1.2.A).

Figure 1.9

Definition. The set of all automorphisms of a graph G is denoted Aut(G) and we

denote |Aut(G)| as aut(G). It is to be shown in Exercise 1.2.9 that Aut(G) is a

group under function composition and is called the automorphism group of graph

G.

Note. We have Aut(Kn) = Sn where Sn is the symmetry group of all permutations

on n elements. Any simple graph of order n will have an automorphism group which

is a subgroup of Sn. In Exercise 1.2.10 it is to be shown that Aut(Cn) = Dn where

Dn is the dihedral group on n elements.

Definition. A simple graph whose vertices are labeled (usually with the labels

v1, v2, . . . , vn) but whose edges are not labeled is a labeled simple graph.
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Note 1.2.B. If a simple graph G has vertex set V where |V | = n, then there are

at most
(
n
2

)
possible edges of G. So

the number of distinct labeled simple graphs of order n is 2(n
2) (∗)

(a particular possible edge may or may not be in E(G), giving two choices for the

presence/absence of an edge). We denote by Gn the set of labeled simple graphs

with vertex set V = {v1, v2, . . . , vn}. The 2(3
2) = 23 = 8 different labeled simple

graphs of order n = 3 are given in Figure 1.10.

Figure 1.10

Note. Given n vertices, there are n! ways to assign the labels v1, v2, . . . , vn. But

for a given graph (with an assigned edge set), two of these labelings will yield the

same labeled graphs if there is an automorphism of the graph mapping one labeling

to the other. So

the number of distinct labelings of a given unlabeled simple graph G

on n vertices is
n!

|Aut(G)|
=

n!

aut(G)
, (∗∗)
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as is to be argued in more detail in Exercise 1.2.15. For example, for K3 there are

3! = 6 labelings of the vertices, but Aut(K3) = S3 and aut(K3) = |Aut(K3)| =

|S3| = 3! = 6 so that the number of distinct labelings of K3 is
n!

aut(G)
=

6

6
= 1. For

P3 there are 3! = 6 labelings of the vertices, but Aut(P3) = Z2 (it consists of the

identity and a reflection about its “center”) and aut(P3) = 2 so that the number of

distinct labelings of P3 is
n!

aut(G)
=

6

2
= 3; these three labelings are given as part

of Figure 1.10.

Note. Combining (∗) and (∗∗), we have by summing over all unlabeled simple

graphs G on n vertices that ∑
G

n!

aut(G)
= 2(n

2). (∗ ∗ ∗)

For any such G, aut(G) ≥ 1 (since Aut(G) contains the identity) and so
1

aut(G)
≤

1. We therefore have from (∗ ∗ ∗) that

2(n
2)

n!
=

∑
G

1

aut(G)
≤

∑
G

1 =

 the number of unlabeled

simple graphs G of order n

 .

Since the number of unlabeled simple graphs of order n is a natural number, then

we can round up on the left to get a lower bound on the number of unlabeled

simple graphs of order n of

⌈
2(n

2)

n!

⌉
. Bondy and Murty (see page 17) observe that

this bound may not be good when n is small, but that when n is large the bound is

a good approximation because the “vast majority” of graphs are asymmetric (that

is, the proportion of simple graphs on n vertices that are asymmetric tends to 1 as

n tends to infinity; see Exercise 1.2.15(d)).
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