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Section 1.3. Graphs Arising from Other Structures

Note. In this section we define hypergraphs, geometric configurations, and partic-

ular graphs constructed from these.

Definition. A polyhedral graph is a graph whose vertices and edges are just the

vertices and edges of the polyhedron with the same incidence relation.

Note. The five platonic solids give rise to the five “platonic graphs” of Figure 1.14.

Figure 1.14. The five platonic graphs: (a) the tetrahedron, (b) the octahedron,

(c) the cube, (d) the dodecahedron, and (e) the icosahedron.
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Definition. A set system is an ordered pair (V,F) where V is a set of elements and

F is a family of subsets of V . A set system is also called a hypergraph where the

elements of V are called vertices of the hypergraph and the elements of F are called

edges or hyperedges. A hypergraph is k-uniform if each edge is a set of cardinality

k.

Note. In set system (V,F) where F consists of subsets of V each of cardinality

two, we can interpret V as the vertex set of a loopless graph and F as the edge set

(or multiset) of the graph. In this sense, graphs are special cases of hypergraphs.

Definition. A geometric configuration (P,L) consists of a finite set P of elements

called points and a finite family L of subsets of P , called lines, with the property

that at most one line contains any given pair of points.

Note. Figure 1.15 gives drawings of the Fano plane and the Desargue configuration.

In both, a line consists of 3 points so each represents a 3-uniform hypergraph. The

Fano plane is the simplest example of a projective plane (see Exercise 1.3.13 and

Chapter 7 of my notes for Design Theory).

Figure 1.15. (a) The Fano plane, and (b) the Desargue configuration.

https://faculty.etsu.edu/gardnerr/Design-Theory/Notes-Design-Theory-LR2.htm


1.3. Graphs Arising from Other Structures 3

Definition. Let H = (V,F) be a set system and define the bipartite graph G[V,F ]

where v ∈ V and F ∈ F are adjacent if v ∈ F . G[V,F ] is called the incidence

graph of set system H. The bipartite adjacency matrix of G[V,F ] is the incidence

matrix of H.

Note. The incidence graph of the Fano plane is given in Figure 1.16; this graph is

called the Heawood graph.

Figure 1.16

Definition. Let (V,F) be a set system and define a graph with vertex set F

and with two sets in F being adjacent if their intersection is nonempty. This is

the intersection graph of the set system. If set system (V,F) represents a loopless

graph G (so that F is the edge set of the graph) then the corresponding intersection

graph is called the line graph of G, denoted L(G).

Note. Figure 1.17 gives a graph G and its line graph L(G). Line graphs are further

explained in Exercises 1.3.2, 1.3.3, and 1.3.4. Line graphs are further explored in

my online notes for Algebraic Graph Theory on Section 1.7. Line Graphs.

https://faculty.etsu.edu/gardnerr/5340/notes-Godsil-Royle/Algebraic-GT-GR-1-7.pdf
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Figure 1.17

Definition. Let (V,F) be a set system where V = R and F is a set of closed

intervals in R. The intersection graph of (V,F) is an interval graph.

Note. Consider the set system (R,F), where F = {[i, i + 1] | i ∈ Z}. For i 6= j,

we have [i, i + 1] ∩ [j, j + 1] 6= ∅ only when i = j + 1 or j = i + 1. So the interval

graph based on the set sytem is an infinite path.

Note. The following definition is given in Exercise 1.3.6.

Definition. Let H = (V,F) be a hypergraph. For v ∈ V , let Fv denote the set

of edges of H incident to v. The dual of H is the hypergraph H∗ whose vertex

set is F and whose edges are the sets Fv where v ∈ V (so edges Fu and Fv in H∗

are adjacent if and only if vertices u and v are adjacent in H). A hypergraph is

self-dual if it is isomorphic to its dual.
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Note. Consider the hypergraph H of the Fano plane, as given in Figure 1.15(a).

The hyperedges of H are:

F1 = {{1, 2, 4}, {1, 3, 7}, {1, 5, 6}},F2 = {{1, 2, 4}, {2, 3, 5}, {2, 6, 7}},

F3 = {{1, 3, 7}, {2, 3, 5}, {3, 4, 6}},F4 = {{1, 2, 4}, {3, 4, 6}, {4, 5, 7}},

F5 = {{1, 5, 6}, {2, 3, 5}, {4, 5, 7}},F6 = {{1, 5, 6}, {2, 6, 7}, {3, 4, 6}},

F7 = {{1, 3, 7}, {2, 6, 7}, {4, 5, 7}}.

The dual graph, H∗, is then the following:

We see from this that the Fano plane is a self dual hypergraph. The incidence

matrix of the Fano plane, MH , is:
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The incidence matrix of the dual graph H∗, MH∗, is:

Notice that MH 6= MH∗ (in fact, it is somewhat of a coincidence that they are

the same size), but that these matrices are transposes of each other, MH = Mt
H∗.

This is not a coincidence, and it is to be shown that this equality holds for any

hypergraph H in Exercise 1.3.6(a).

Note. The following definition appears in Exercise 1.3.18.

Definition. Let Γ be a group, and let S be a set of elements of Γ not including the

identity element. Suppose, furthermore, that the inverse of every element of S also

belongs to S. The Cayley graph of Γ with respect to S is the graph CG(Γ, S) with

vertex set Γ in which two vertices x and y are adjacent if and only if xy−1 ∈ S.
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Note. In Exercise 1.3.18(b) it is to be shown that every Cayley graph is vertex

transitive, and in Exercise 1.3.18(c) it is to be shown (using the Petersen graph)

that not every vertex transitive graph is a Cayley graph.

Note. As an example of a Cayley graph, consider the additive group Γ = Z and

let S = {−1, 1}. Notice that for x, y ∈ Z, we have xy−1 = x + (−y) ∈ {−1, 1}

implies that either x = y − 1 or x = y + 1. Hence, for every n ∈ Z we have that n

is adjacent to both n− 1 and n+1 and to no other vertices. Therefore, the Cayley

graph of Γ = Z with respect to S = {−1, 1} is an infinite path.

Note. The following definition appears in Exercise 1.3.19. It gives a family of

Cayley graphs with respect to certain sets.

Definition. A circulant is a Cayley graph CG(Zn, S), where Zn is the additive

group of integers modulo n.

Note. Circulant graphs are explored in my online notes for Algebraic Graph

Theory on Section 1.5. Circulant Graphs. In particular, the following example is

given those notes.

https://faculty.etsu.edu/gardnerr/5340/notes-Godsil-Royle/Algebraic-GT-GR-1-5.pdf
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