Section 1.4. Constructing Graphs from Other Graphs

Note. In this section we describe a way to create a third graph from two given graphs G and H. In the presentation, G and H are assumed to be simple, though this restriction could be lifted.

Definition. Two graphs are disjoint if they have no vertex in common, and are edge-disjoint if they have no edge in common. The union of simple graphs G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If G and H are disjoint, then $G \cup H$ is the disjoint union of G and H, denoted $G+H$.

Note. In Exercise 1.4.1 it is to be shown that every graph may be expressed uniquely (up to order) as a disjoint union of connected graphs.

Definition. For a graph G, the disjoint connected graphs which union to give graph G are the connected components (or just components) of G. The number of components is denoted $c(G)$.

Definition. The intersection of simple graphs G and H is the graph $G \cap H$ with vertex set $V(G) \cap V(H)$ and edge set $E(G) \cap E(H)$.

Note. If graphs G and H are disjoint then $G \cap H$ is the null graph. Figure 1.22 shows $G \cup H$ and $G \cap H$ for small graphs G and H.

Figure 1.22

Definition. The Cartesian product of simple graphs G and H is the graph $G \square H$ whose vertex set is $V(G) \times V(H)$ and whose edge set is the set of all pairs $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)$ such that either $u_{1} u_{2} \in E(G)$ and $v_{1}=v_{2}$, or $v_{1} v_{2} \in E(H)$ and $u_{1}=u_{2}$

Note. For each $u_{1} u_{2} \in E(G)$ and each $v_{1} v_{2} \in E(H)$, there are four edges in $G \square H$, namely $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{1}\right),\left(u_{1}, v_{2}\right)\left(u_{2}, v_{2}\right),\left(u_{1}, v_{1}\right)\left(u_{1}, v_{2}\right)$, and $\left(u_{2}, v_{1}\right)\left(u_{2}, v_{2}\right)$. Figure 1.23(a) gives $K_{2} \square K_{2}$. The Cartesian product $P_{m} \square P_{n}$ of two paths is the $(m \times n)$-grid and is illustrated in Figure 1.23(b) for $m=5$ and $n=4$.

(a)

(b)

Figure 1.23

Definition. For $n \geq 3, C_{n} \square K_{2}$ is the n-prism. The 3-prism is the triangular prism, the 4 -prism is the cube, and the 5 -prism is the pentagonal prism.

Note. The 3-prism and 5-prism are illustrated in Figure 1.24.

Figure 1.24

Revised: 9/9/2020

