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Chapter 10. Planar Graphs

Note. Some of the material in this chapter requires results from other areas of

math, namely topology. We refer to the Jordan Curve Theorem in Section 10.1 (a

result concerning simple closed curves in the plane) and to the Classification Theo-

rem for Surfaces in Section 10.6 (when we consider embedding graphs in surfaces).

Section 10.1. Plane and Planar Graphs

Note. We borrow some results from topology in this section and somewhat reduce

our level of rigor. In an attempt to maximize what rigor we do have, we state

a formal definition of a planar embedding in terms of homeomorphisms (in Note

10.1.A; this material is not in the text book).

Definition. A graph is embeddable in the plane, or planar, if it can be drawn in

the plane so that its edges intersect only at their ends. Such a drawing is a planar

embedding of the graph and is itself called a plane graph.

Note. A planar graph is simply a graph which can be embedded in the plane

with no edge crossings. A “plane graph” has more structure than a graph since it

reflects some specific embedding in the plane; a planar graph can be associated with

several different plane graphs (the plane graphs will be isomorphic as graphs, but

may have different properties as embeddings in the plane). The topic of crossing

number is covered in Introduction to Graph Theory (MATH 4347/5347); see my

online notes for this class on Section 9.1. Crossing Number.

https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-9-1.pdf
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Note 10.1.A. More formally, a planar embedding of a (finite) planar graph G is a

one-to-one (injective) mapping α of V (G) into R2 and a collection of m home-

omorphisms (defined below in Note 10.1.C), h1, h2, . . . , hm, mapping [0, 1] into

R2 such that for edge ei of G with ψG(ei) = uivi, where ψG is the incidence

function of G, we have homeomorphism hi with hi(0) = α(ui), hi(1) = α(vi),

hi(x) 6∈ V (G) for x ∈ (0, 1), and for any i 6= j we have that {hi(x) | x ∈ (0, 1)} and

{hj(x) | x ∈ (0, 1)} are disjoint. In this way, each vertex of G is represented by a

point in R2, each edge is represented by an “arc” in R2 which is a homeomorphic

image of [0, 1] that joins the ends of the edge, an arc representing an edge only con-

tains images of vertices which are ends of the edge, and any pair of arcs intersect

only at their ends (if at all).

Note. We denote a planar embedding of a planar graph G as G̃. We call the

images of the vertices under α the points of G̃ and the sets {hi(x) | x ∈ [0, 1]} the

lines of G̃.
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Note 10.1.B. The term “line” above is appropriate since every simple planar graph

can be embedded in the plane where each “line” is actually a line segment. This was

shown by K. Wagner in “Bemerkungen zum Vierfarbenproblem [Comments on the

Four-Color Problem],” Jahresbericht der Deutschen Mathematiker-Vereinigung, 46,

26–32 (1936). A copy is available online (in German, of course). See also Exercise

10.1.6.

Note. We now give some topological definitions and one theorem concerning the

plane R2 (treated as a topological space under the “usual” topology). More precise

definitions can be found in James R. Munkres’ Topology, 2nd edition, Prentice

Hall (2000) (in particular, see “Chapter 10. Separation Theorems in the Plane”).

See also my online notes Algebraic Topology for some relevant notes based on

Munkres’ book. Here, we largely follow Bondy and Murty but make a few small

changes motivated by Munkres.

Note 10.1.C. A homeomorphism between topological spaces is a continuous map-

ping between the spaces which has a continuous inverse (notice that since a home-

omorphism is invertible by definition, then it is necessarily one-to-one). A simple

curve in R2 is a homeomorphic image of [0, 1] in R2. A simple closed curve in R2 is

a homeomorphic image of the circle S2 = {x2 +y2 = 1 | (x, y) ∈ R2} in R2. (Bondy

and Murty require only continuity and not a homeomorphism in defining a curve,

so they can streamline the definition of a simple closed curve. But the proof of

the main theorem we need as background is dependent on the use of homeomor-

phisms.) Given two points x and y in a topological space X, a path from x to y

is a continuous map f : [0, 1] → X such that f(0) = x and f(1) = y. A space X

https://gdz.sub.uni-goettingen.de/id/PPN37721857X_0046?tify=%7B%22view%22:%22info%22,%22pages%22:%5B32%5D%7D
http://faculty.etsu.edu/gardnerr/5357/notes2.htm
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is path connected if every pair of points of X can be joined by a path in X. See

my online notes on for Topology [MATH 4357/5347] on 3.24. Connected Subspaces

of the Real Line. Bondy and Murty use the term “arcwise-connected” for path

connected; of course Bondy and Murty have a different use for the term “path.”

Theorem 10.1. The Jordan Curve Theorem (Bondy and Murty’s version)

Any simple closed curve C in the plane R2 partitions the rest of the plane R2 \ C

into two disjoint arcwise-connected open sets.

Note. Munkres states a related result:
Theorem 61.3. The Jordan Separation Theorem.

Let C be a simple closed curve in S2 (the surface of a locally 2-

dimensional sphere). Then C separates S2 (in the sense of a topological

separation mentioned in our Section 1.1 in Note 1.1.B).

The reason that Munkres can state the theorem in terms of S2 instead of R2 will

become clear when we look at stereographic projection later in this section.

Definition. The two open sets into which a simple closed curve C partitions

the plane are called the interior and the exterior of C, denoted int(C) and ext(C),

respectively. The topological closure of int(C) is denoted Int(C) and the topological

closure of ext(C) is denoted Ext(C).

Note. Recall that a continuous image of a compact set is compact, so a simple

closed curve in R2 is a compact set in R2. By the Heine-Borel Theorem (see Theo-

rem 3-10/3-11 in my online Analysis 1 [MATH 4217/5217] notes on 3-1. Topology

http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-24.pdf
http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-24.pdf
http://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
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of the Real Numbers) this means that a simple closed curve is a topologically closed

and bounded set in R2. So one of the two open sets which partition R2 \C must be

bounded and the other is unbounded. This is how we distinguish between int(C)

and ext(C). Munkres proves this in Theorem 63.4, “The Jordan Curve Theorem.”

Note. The Jordan Curve Theorem implies that an arc (or, in the topological sense,

“path”) joining a point of int(C) to a point of ext(C) must meet C in at least one

point:

Figure 10.2

This property is how we will use the Jordan Curve Theorem to show that certain

graphs are NOT planar.

Theorem 10.2. K5 is nonplanar.

Note. The Jordan Curve Theorem can also be used to prove thatK3,3 is nonplanar,

as is to be done in Exercise 10.1.1(b). In Theorem 10.30, “Kuratowski’s Theorem,”

we’ll see that K5 and K3,3 are fundamental nonplanar graphs.

http://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
http://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
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Definition. A graph derived from graphG by a finite sequence of edge subdivisions

is a subdivision of G.

Note. Subdivisions of K5 and K3,3 are given in Figure 10.4:

Figure 10.4

Notice that these two subdivided graphs are not planar.

Proposition 10.3. A graph G is planar if and only if every subdivision of G is

planar.

Note. The proof of Proposition 10.3 is to be given in Exercise 10.1.2. Since K5

and K3,3 are nonplanar, this result implies that no planar graph can contain a

subdivision of either K5 and K3,3. Kuratowski’s Theorem (Theorem 10.30, proved

in 1930) is the converse of this: any nonplanar graph contains a subdivision of

either K5 or K3,3.
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Note 10.1.D. Consider a sphere S resting on a plane P (i.e., P is tangent to S),

and denote by z the point on S diametrically opposite the point of tangency. Define

a map π : S \ {z} → P defined by π(s) = p if and only if the points z, s, and p are

collinear. This mapping is called a stereographic projection from z:

Stereographic projection also arises in the setting of complex analysis. It can be

used to define the extended complex plane C∞ and used to define a metric on C∞;

see my online notes for Complex Analysis 1 (MATH 5510) on I.6. The Extended

Plane and Its Spherical Representation and Supplement. The Extended Complex

Plane.

Note. Stereographic projection can be used to prove the following, which gives an

equivalence of planar graphs with graphs embeddable on the sphere.

Theorem 10.4. A graph G is embeddable in the plane if and only if it is embed-

dable in the sphere.
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http://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
http://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
http://faculty.etsu.edu/gardnerr/5510/notes/Extended-Complex-Plane.pdf
http://faculty.etsu.edu/gardnerr/5510/notes/Extended-Complex-Plane.pdf

