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Section 10.2. Duality

Note. We introduce the idea of a face of a planar graph and define the dual G∗ of

plane graph G. Several properties of the dual graph are given.

Definition. By the Jordan Curve Theorem (Theorem 10.1), a plane embedding of

a planar graph G partitions the rest of the plane (that is, the complement of the

points and lines of the embedding) into a finite number of arcwise-connected open

sets called the faces of G. The unbounded face is called the outer face. The set of

faces is denoted F (G) and the number of faces is denoted f(G).

Note. The idea of a face of a graph extends to the setting of embeddings on

surfaces (though we may loose the idea of an outer face on finite surfaces). Figure

10.7 gives a plane embedding of a graph with five faces:

Figure 10.7

Definition. The boundary of a face f is the boundary of the open set f in the

“usual topological sense,” denoted ∂(f). Face f is said to be incident with the

vertices and edges in ∂(f) and two faces are said to be adjacent if their boundaries

share an edge.
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Proposition 10.5. Let G be a planar graph and let f be a face in some planar

embedding of G. Then G admits a planar embedding whose outer face has the

same boundary as f .

Note. Bondy and Murty state on page 250: “In the ensuing discussion of plane

graphs, we assume, without proof, a number of other intuitively obvious statements

concerning their faces.” Namely, we assume:

• A planar embedding of a tree has just one face.

• Each face boundary in a connected plane graph is itself connected.

• Any point p on a simple closed curve C can be connected to any point not on C

be means of a simple curve which meets C only at p.

We will use this third property below when giving some simplifying properties of

dual edges (in Note 10.2.B). Bondy and Murty mention the following as useful in

establishing some of these results:

Theorem 10.6. The Jordan Schönfliess Theorem. Any home-

omorphism of a simple closed curve in the plane onto another simple

closed curve can be extended to a homeomorphism of the plane.

For a rigorous approach, Bondy and Murty recommend B. Mohar and C. Thomassen’s

Graphs and Surfaces, Baltimore: Johns Hopkins University Press (2001). The

ETSU Sherrod Library has a copy of this book (QA.166.M64.2001):
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I have online notes based on this source for Topological Graph Theory.

Definition. An edge is said to separate the faces f incident with it. The degree

of a face f is the number of edges in its boundary ∂(f), with cut edges counted

twice, and is denoted d(f).

Note 10.2.A. A cut edge in a plane graph has just one incident face (and con-

versely); it could be for example an edge of a path in a face or it could be a cut

edge with the outer face on “both sides” of it. In Figure 10.7, edge e9 separates the

faces f2 and f3 and the edge e8 separates the face f5 from itself. Note the degree

of face f5 is 5 since edge e8 counts twice:

Figure 10.7

Definition. Let G be a connected plane graph. To subdivide a face f of G is to

add a new edge e joining the two vertices on its boundary in such a way that e lies

entirely in the interior of f except for the endpoints of e.

https://faculty.etsu.edu/gardnerr/5340/notes-Mohar-Thomassen.htm
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Note. Figure 10.8 shows that the subdivision of a face. Notice that the new graph

G + e has exactly one more face than G.

Figure 10.8

In Exercise 10.2.2, it is to be shown that: “The boundary of a face of a connected

graph can be regarded as a closed walk in which each cut edge of the graph lying

in the boundary is traversed twice.” The following is due to H. Whitney (1932).

Theorem 10.7. In a nonseparable plane graph other than K1 or K2, each face is

bounded by a cycle.

Corollary 10.8. In a loopless 3-connected plane graph, the neighbors of any vertex

lie on a common cycle.

Definition. Let G be a plane graph. For each face f of G define a vertex f ∗ of

graph G∗. Two vertices f ∗ and g∗ are joined by the edge e∗ in G∗ if and only if

their corresponding faces f and g are separated by edge e in G. Graph G∗ is the

dual of G.
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Note. The definition of the dual G∗ of plane graph G implies:

v(G∗) = f(G), e(G∗) = e(G), and dG∗(f ∗) = dG(f) for all f ∈ F (G). (10.1)

Note 10.2.B. Informally, we place vertex f ∗ in corresponding face f of plane graph

G and then draw each edge e∗ in such a way that it crosses the corresponding edge

e of G exactly once and intersects no other edges of G (see Bondy and Murty page

252). If e is a cut edge of G then e has the same face on both sides of e, and so e∗

in G∗ is a loop. Conversely, for each loop in G∗ there is a cut edge in G. The dual

of the plane graph of Figure 10.7 is given in Figure 10.9:

Figure 10.9 Figure 10.10

Note. Note 10.2.B helps us justify the following.

Lemma 10.2.A. The dual G∗ of a plane graph G is itself a plane graph.

Definition. A drawing of G∗ for plane graph G as described above is a plane dual

of the plane graph G.
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Proposition 10.9. A dual G∗ of a plane graph G is connected.

Note. We can consider the dual of the dual of plane graph G (the “double dual”) of

G, G∗∗. G is connected if and only if G∗∗ ∼= G, as is to be shown in Exercise 10.2.4

(or Exercise 10.2.6, depending on the printing of the book). This is illustrated here

for G not connected:

Notice that G is not connected, but that G∗ and G∗∗ are (as expected from Propo-

sition 10.9). Notice that G, G∗, and G∗∗ each have six edges. G has six vertices,

but G∗∗ has only five vertices. In particular, G 6∼= G∗∗.

Note. A peculiar property of duals is that different planar embeddings of a given

graph may yield different duals. In Figure 10.11, we see two different embeddings

of the same planar graph (so for planar graph may have more than one planar

embedding and more than one associated plane graph), and the duals of these two

plane graphs are different. The plane graph on the left has two faces of degree 5

and the graph on the right has only one face of degree 5. As Bondy and Mutry

state on page 253: “Thus the notion of a dual graph is meaningful only for plane
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graphs [i.e., where the embedding in the plane is given], and not for planar graphs

[which have an embedding, but it is not explicitly given] in general.” Bondy and

Murty call the next result “a dual version of Theorem 1.1.”

Figure 10.11

Theorem 10.10. If G is a plane graph, then
∑

f∈F d(f) = 2m.

Definition. A simple connected graph in which all faces have degree three is a

plane triangulation.

Proposition 10.11. A simple connected plane graph is a triangulation if and only

if its dual is cubic.

Note. In Exercise 10.2.3, it is to be shown that every simple connected plane graph

on n ≥ 3 vertices is a spanning subgraph of a triangulation. We’ll show in Section

10.3. Euler’s Formula (see Corollary 10.21) that no simple spanning supergraph of

a triangulation is planar. So triangulations are “maximal planar graphs” in terms

of spanning subgraphs/supergraphs of planar graphs.

Note 10.2.C. If G is a planar graph then for any edge e of G we have G\e is planar

(just remove line e from a plane embedding G̃ of G). In fact, if G is a planar graph

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-3.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-3.pdf
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then the contraction of an edge yields a planar graph G/e, as is shown in Exercise

10.1.4(a). The next two results show relationships between edge contraction and

edge deletion in plane graphs and their duals.

Proposition 10.12. Let G be a connected plane graph and let e be an edge of G

that is not a cut edge. Then (G \ e)∗ ∼= G∗/e∗.

Proposition 10.13. Let G be a connected plane graph and let e be a link (i.e., a

nonloop) of G. Then (G/e)∗ ∼= G∗ \ e∗.

Note. Bondy and Murty declare that the next result “turns out to be very useful.”

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.

Note. We now define the dual of a digraph. In so doing, we need a well-defined

way to orient the arcs of the dual.

Definition. Let D be a plane digraph with underlying plane graph G. Then G

has a plane dual G∗. Let a be an arc of D that separates two faces of G. As a is

traversed from its tail to its head, one of these faces lies to the left of a, which we

denote la, and one lies to the right of a, which we denote ra (if a is a cut “edge” of

D then la = ra). For each arc of D, orient the edge of G∗ that crosses this edge as

an arc a∗ by designating the end of a∗ lying in la as the tail of a∗ and the end lying

in ra as its head. The resulting plane digraph D∗ is the directed plane dual of D.
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Note. The ideas of “lies to the” left/right can be made more rigorous by giving

specific homeomorphisms which map [0, 1] onto an arc of plane digraph D. For

an example of this in the setting of the extended complex plane C∞ (which is

homeomorphic, under stereographic projection, to the 2-sphere) see my online notes

for Complex Analysis 1 (MATH 5510) on III.3. Analytic Functions as Mapping,

Möbius Transformations; in particular, see Definition III.3.20 and the definition

that follows it. Figure 10.13 below shows the directed plane dual (in bold) of a

plane digraph; notice the “left/right” induced directions on the dual digraph.

Figure 10.13

Note. In Section 2.6, “Even Subgraphs,” we defined the edge (vector) space of

graph G over scalar field GF (2) ∼= Z2 where the vectors are sets of edges of G, vector

addition is defined in terms of symmetric differences, and scalar multiplication is

defined as 0E = ∅ and 1E = e for vector E. The cycle (vector) space of G is the

subspace of the edge space generated by cycles, and the bond space of G is the

subspace of the edge space generated by the bonds of G. We now consider how

these spaces are related between G and G∗.

https://faculty.etsu.edu/gardnerr/5510/notes/III-3.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/III-3.pdf
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Proposition 10.15. Let G be a plane graph, G∗ a plane dual of G, C a cycle of

G, and X∗ the set of vertices of G∗ that lie in int(C). Then G∗[X∗] is connected.

Note 10.2.D. The proof of Proposition 10.15 is similar to the proof of Proposition

10.9 and is left as Exercise 10.2.A. The proof of Proposition 10.15 follows by deleting

edges in Ext(C), observing that this results in a plane graph with edge set E(G[X])

by Note 10.2.C, and applying Proposition 10.9 to this new plane graph. Notice that

isolated vertices do not affect a plane graph.

Note. In the next result, we denote by S∗ the set {e∗ | e ∈ S ⊆ E(G)} ⊆ E(G∗)

for graph G.

Theorem 10.16. Let G be a connected plane graph, and let G∗ be a plane dual

of G.

(a) If C is a cycle of G, then C∗ is a bond of G∗.

(b) If B is a bond of G, then B∗ is a cycle of G∗.

Note. The proof of part (b) is left as Exercise 10.2.9. The dual relationship

between bonds and cycles given in Theorem 10.16 implies the following.

Corollary 10.17. For any plane graph G, the cycle space of G is isomorphic to

the bond space of G∗.
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Note. Similar results hold for digraphs. Let D be a plane digraph and D∗ its

directed plane dual. Denote by S∗ the set {a∗ | a ∈ S ⊆ A(D)} ⊆ A(D∗). Part

(b) of the following is the directed analogue of Corollary 10.17. The proof is to be

given in Exercise 10.2.13.

Theorem 10.18. Let D be a connected plane digraph and let D∗ be a plane

directed dual of D.

(a) Let C be a cycle of D, with a prescribed sense of traversal. Then C∗ is a bond

∂(X∗) of D∗. Moreover the set of forward arcs of C corresponds to the outcut

∂+(X∗) and the set of reverse arcs of C to the incut ∂−(X∗).

(b) Let B = ∂(X) be a bond of D. Then B∗ is a cycle of D∗. Moreover the outcut

∂+(X) corresponds to the set of forward arcs of B∗ and the incut ∂−(X)

corresponds to the set of reverse arcs of B∗ (with respect to a certain sense of

traversal of B∗).
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