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Section 10.5. Kuratowski’s Theorem

Note. We saw in Section 10.3, “Euler’s Formula,” that K5 and K3,3 are nonplaner

(see Corollaries 10.23 and 10.24). In 1930, Kazimierz (aka. “Casimir”) Kuratowski

gave the classification of nonplanar graphs in terms of subgraphs related to K5 and

K3,3 in “Sur le poblème des courber gauches en topologie,” Fundamenta Mathe-

maticae, 15, 271–283. A copy is available online in French (accessed 6/5/2020).

Kazimierz Kuratowski (February 2, 1896 - 18 June 18, 1980)

Photo from MacTutor History of Mathematics Archive (accessed 6/5/2020).

Theorem 10.30. Kuratowski’s Theorem.

A graph is planar if and only if it contains no subdivision of either K5 or K3,3.

Note. We introduce the idea of a graph minor and present a proof by Carsten

Thomassen from “Kuratowski’s Theorem,” Journal of Graph Theory, 5(3), 225–241

(1981).

http://matwbn.icm.edu.pl/ksiazki/fm/fm15/fm15126.pdf
https://mathshistory.st-andrews.ac.uk/
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Definition. A minor of a graph G is any graph obtainable from G through a

sequence of vertex and edge deletions and edge contractions. If F is a minor of G,

we write F � G. An F -minor of G is a minor of G which is isomorphic to F . A

minor which is isomorphic to K5 or K3,3 is a Kuratowski minor. A subdivision of

K5 or K3,3 is a Kuratowski subdivision.

Note 10.5.A. We can think of constructing minors as follows. Take a partition

(V0, V1, . . . , Vk) of the vertex set V of graph G such that the induced subgraphs

G[Vi] are connected for 1 ≤ i ≤ k. Let H be the graph obtained from G by deleting

V0 and shrinking each induced subgraph G[Vi] to a single vertex (that is, contract

all edges of G[Vi] and then identify all resulting vertices in Vi; see Section 2.3.

Modifying Graphs). Then any spanning subgraph F of H is a minor of G.

Note. K5 is a minor of the Petersen graph, as shown in the following figure:

Notice that the Peterson graph does not contain a K5-subdivision, since this would

require it to contain five vertices, each of degree four, but it is 3-regular.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-2-3.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-2-3.pdf
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Note 10.5.B. A graph which contains an F -subdivision also has an F -minor. To

obtain F as a minor, we delete the vertices and edges not in the F -subdivision and

then contract each subdivided edge into a single edge. By Exercise 10.5.3(a), the

converse holds if F has maximum degree three or less. That is, a graph with an

F -minor for such F also contains an F -subdivision.

Note 10.5.C. To see that a graph may have an F -minor but not an F -subdivision,

consider the graph G1 below.

Then G1 has a K5-minor (notice the contraction of edge e produces G1/e ∼= K5),

but G1 does not contain a subdivision of K5 (this would require five vertices of

degree 4). However, G1 does contain a K3,3-subdivision (in fact, K3,3 is a subgraph

of G1). Deleting edges 35 and 46 gives K3,3 with partite sets {1, 3, 5} and {2, 4, 6}.

The Petersen graph behaves similarly in that it has a K5-minor graph but no K5-

subdivision; it has a K3,3-subdivision but not a K3,3 subgraph (as we show below).

In Exercise 10.5.3(b) it is to be shown that a graph with a K5-minor contains either

a K5-subdivision or a K3,3-subdivision.
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Note. As an additional example of minors, subdivisions, and subgraphs, consider

the Petersen graph again. In the figure below, we first delete two edges of the

Petersen graph, as shown (upper right). This results in a subdivision of K3,3 as

shown (lower left) where the partite sets are the three red vertices and the three

blue vertices. The three black vertices represent subdivisions of edges of K3,3. If we

contract one edge incident to each black vertex, then we get the graph K3,3 (lower

right). Therefore K3,3 is a both a subdivision and a minor of the Petersen graph

(consistent with Note 10.5.B).

We saw above that the Petersen graph has a K5 minor, but it does not have a K5

subgraph (since the Petersen graph is 3-regular and K5 if 4-regular). We also claim

that the Petersen graph does not have a K3,3 subgraph. If there is a K3,3 subgraph,

then consider an arbitrary vertex (we need to use the fact that the Petersen graph

is vertex transitive here, which it is), say the upper-most vertex in the drawing of

the Petersen graph given above, and let it be in one partite set X of the bipartition.
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Then each of the three neighbors of this vertex must be in the other partite set Y

of the bipartition. But then each of the three vertices in Y must share two more

common neighbors, and this is not the case. So there can be no K3,3 subgraph of

the Petersen graph.

Note. By Note 10.2.C, the deletion or contraction of an edge in a planar graph

results in a planar graph. Since a minor graph is found through a sequence of edge

deletions and contractions, then we have the following.

Proposition 10.31. Minors of planar graphs are planar.

Note. We will argue that Kuratowski’s Theorem is equivalent to the following

result of K. Wagner from 1937, which we will prove.

Theorem 10.32. Wagner’s Theorem.

A graph is planar if and only if it has no Kuratowski minor.

Note 10.5.D. By Note 10.5.B, a graph that contains an F -subdivision also has

an F -minor, so Kuratowski’s Theorem (Theorem 10.30) implies Wagner’s The-

orem (Theorem 10.32). Since K3,3 has maximum degree three, then by Exercise

10.5.3(a) any graph with a K3,3-minor also contains a K3,3-subdivision. By Exercise

10.5.3(b), any graph which has a K5-minor necessarily contains a Kuratowski sub-

division; see Supplement. Section 10.5. Kuratowski’s Theorem, Exercise 10.5.3(b)

for a solution to this exercise. So Wagner’s Theorem implies Kuratowski’s Theo-

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-5-supplement.pdf
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rem. That is, Kuratowski’s Theorem and Wagner’s Theorem are equivalent. We

will prove Wagner’s Theorem using the next two lemmas.

Note. Recall from Section 9.1. Vertex Connectivity, a k-vertex cut of G is a set

S of k vertices of G such that for some vertices u and v of G, u and v are in

different components of G − S. Set S is called a uv-vertex cut. In Section 9.4.

Three-Connected Graphs, the components of G − S are called S-components. If

G is connected and S = {x, y} then the new edge xy is a marker edge and the

S-components of G with edge xy added are the marked S-components. See Figure

9.7.

Lemma 10.33. Let G be a graph with a 2-vertex cut set S = {x, y}. Then each

marked {x, y}-component of G is isomorphic to a minor of G.

Lemma 10.34. Let G be a graph with a 2-vertex cut set S = {x, y}. Then G is

planar if and only if each of its marked S-components is planar.

Note. We next prove Wagner’s Theorem (Theorem 10.32) for 3-connected graphs.

The proof is based on C. Thomassen’s 1981 paper mentioned above. It uses Bondy

and Murty’s Theorem 9.10 (also proved by Thomassen) which we recall here.

Theorem 9.10. Let G be a 3-connected graph on at least five vertices.

Then G contains an edge e such that G/e is 3-connected.

Theorem 10.35. Every 3-connected nonplanar graph has a Kuratowski minor.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-9-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-9-4.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-9-4.pdf
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Definition. A convex embedding is a planar embedding all of whose faces are

bounded by convex polygons.

Note. Similar to the proof of Theorem 10.35, we can prove that every simple

3-connected graph has a convex embedding. This is to be shown in Exercise 10.5.5

(the proof is similar to the proof of Theorem 10.35, but slightly modified in the

placing of bridges Bx and By and edge e = xy).

Note. We are now ready to give a proof of Wagner’s Theorem (Theorem 10.32),

and hence a proof of Kuratowski’s Theorem (Theorem 10.30) by Note 10.5.D.

Note. Three of the exercises in this section give other classifications of planar

graphs. The proof of each is based on Kuratowski’s Theorem (Theorem 10.30). We

paraphrase these exercises here.

Exercise 10.5.7. A graph is planar if and only if the bridge-overlap (see Section

10.4. Bridges) of each cycle is bipartite.

Exercise 10.5.8. A basis of the cycle space (see Section 2.6. Even Subgraphs) of

a graph is a 2-basis if each member of the basis is a cycle of the graph, and

each edge of the graph lies in at most two of these cycles. Prove that a graph

is planar if and only if its cycle space has a 2-basis. This is “MacLane’s Theo-

rem” and first appeared in Saunders MacLane, A Combinatorial Condition for

Planar Graphs, Fundamenta Mathematicae, 28, 22–32 (1937). An online copy

is available at the Fundamenta Mathematicae website (accessed 1/13/2021).

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-4.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-4.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-2-6.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm28/fm2814.pdf
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Exercise 10.5.9. A graph H is called an algebraic dual of a graph G if there is a

bijection ϕ : E(G) → E(H) such that a subset C of E(G) is a cycle of G if

and only if ϕ(C) is a bond of H (see Exercise 4.3.8). Prove that a graph is

planar if and only if it has an algebraic dual. This is “Whitney’s Theorem”

and first appeared in Hassler Whitney, Non-Separable and Planar Graphs,

Transactions of the American Mathematical Society, 34, 339–362 (1932). An

online copy is available at the T.A.M.S. website (accessed 1/13/2021).

Note. In the next section we will consider embedding graphs on surfaces. A gen-

eralization of Kuratowksi’s Theorem holds in this setting also. For a surface S,

there is a finite collection Forb0(S) of “forbidden” graphs that cannot be drawn

on S such that any graph G can be drawn on S if and only if G has no graph in

Forb0(S) as a minor. This was proved in Neil Robertson and P.D. Seymour, Graph

Minors. VIII. A Kuratowski Theorem for General Surfaces, Journal of Combina-

torial Theory Series B, 48, 255–288 (1990). A copy is available online at J.C.T.B.

website (accessed 1/13/2021). More references and related results can be found

in Bojan Mohar and Carsten Thomassen, Graphs on Surfaces, Baltimore: Johns

Hopkins University Press (2001); see its Chapter 6 on “Embedding Extensions and

Obstructions.”

Note. At the end of this section, Bondy and Murty describe an algorithm that

has as input a 3-connected graph G on four or more vertices and has as output

either a Kuratowski minor (if G is nonplanar) or a planar embedding of G (when

G is planar). As described in the proof of Wagner’s Theorem (Theorem 10.32),

https://www.ams.org/journals/tran/1932-034-02/S0002-9947-1932-1501641-2/S0002-9947-1932-1501641-2.pdf
https://reader.elsevier.com/reader/sd/pii/009589569090121F?token=2D576513A00BE06FC3EF92CE50F0C7792812AAD59CFB4954F563243A5D5726994DAF324F7DC416B292D273BC523EB6A9
https://reader.elsevier.com/reader/sd/pii/009589569090121F?token=2D576513A00BE06FC3EF92CE50F0C7792812AAD59CFB4954F563243A5D5726994DAF324F7DC416B292D273BC523EB6A9
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it suffices to consider 3-connected graphs. The algorithm, “Algorithm 10.36. Pla-

narity Recognition and Embedding,” runs in polynomial-time. Bondy and Murty

describe the algorithm as (see page 272–73):

“First, the input graph is contracted, one edge at a time, to a complete

graph on four vertices (perhaps with loops and multiple edges) in such

a way that all intermediate graphs are 3-connected. . . . The resulting

four-vertex graph is then embedded in the plane. The contracted edges

are now expanded one by one (in reverse order). At each stage of this

expansion phase, one of two eventualities may arise: either the edge can

be expanded while preserving planarity, and the algorithm proceeds to

the next contracted edge, or else two bridges are found which overlap,

yielding a Kuratowski minor.”

If the graph is nonplanar then the algorithm outputs the Kuratowksi minor thus

“certifying” that the input graph is nonplanar. If the graph is planar, then the

algorirhm outputs a planar embedding of G.

Algorithm 10.36. Planarity Recognition and Embedding.

Input: a 3-connected graph G on four or more vertices

Output: a Kuratowksi minor of G or a planar embedding of G

1. set i := 0 and G0 := G

Contraction Phase:

2. while i < n− 4 do

3. find a link ei := xiyi of Gi such that Gi/ei is 3-connected

4. set Gi+1 := Gi/ei

5. replace i by i + 1
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6. end while

Expansion Phase:

7. find a planar embedding G̃n−4 of the four-vertex graph Gn−4

8. set i := n− 4

9. while i > 0 do

10. Let Ci be the facial cycle of G̃i − zi that includes all the neighbors of zi in

G̃i, where zi denotes the vertex of G̃i resulting from the contraction of the

edge ei−1 of Gi−1

11. let Bi and B̃i, respectively, denote the bridges of Ci containing the vertices

xi−1 and yi=1 in the graph obtained from Gi−1 by deleting ei−1 and all other

edges linking xi−1 and yi−1

12. if Bi and B′
i are skew then

13. find a K3,3-minor K of Gi−1

14. return K

15. end if

16. if Bi and B′
i are equivalent 3-bridges then

17. find a K5-minor K of Gi−1

18. return K

19. end if

20. if Bi and B′
i avoid each other then

21. extend the planar embedding G̃i of Gi to a planar embedding G̃i−1 of

Gi−1

22. replace i by i− 1

23. end if
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24. end while

25. return G̃0.

Note. The Planarity Recognition and Embedding algorithm runs in polynomial

time, so that it belongs to the class of polynomial-time algorithms, P ; see my notes

for Mathematical Modeling Using Graph Theory (MATH 5870) on Section 8.1.

Computational Complexity (see Note 8.1.A). J. Hopcroft and R. Tarjan, in “Ef-

ficient Planarity Testing,” Journal of the Association for Computing Machinery,

21(4), 549–568 (1974) (a copy is online on the Princeton University Computer Sci-

ence server; accessed 1/13/2023) gave a linear time(!) planarity algorithm. A

graph planarity algorithm using bridge-overlap is given in Bondy and Murty’s

undergraduate-graduate level Graph Theory with Applications (Macmillan Press

Ltd., 1976); see Section 9.8, “Planarity Algorithm.”

Revised: 4/6/2023

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-8-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-8-1.pdf
https://www.cs.princeton.edu/courses/archive/fall05/cos528/handouts/Efficient%20Planarity.pdf
https://www.cs.princeton.edu/courses/archive/fall05/cos528/handouts/Efficient%20Planarity.pdf

