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Section 10.6. Surface Embeddings of Graphs

Note. We now take the idea of planar embeddings and extend it to embeddings on

surfaces other than the plane. We will informally classify surfaces, both orientable

and nonorientable. We give a version of Euler’s Formula for surfaces and state the

Orientable Embedding Conjecture. This section lacks rigor and we give no proofs.

Note. An n-manifold is sort of an n-dimensional surface which has a certain level

of smoothness. The formal definition is rather involved and best dealt with in a

class on differential geometry. A formal definition can be found in my Differential

Geometry (MATH 5310) online notes on VII. Manifolds (see Definition VII.2.01).

Another formal definition is in my online notes for Complex Analysis 2 (MATH

5520) on IX.6. Analytic Manifolds (see Definition IX.6.2) where analytic functions

from C to C are part of the definition. A somewhat more tangible definition

of a 2-manifold (which is sufficient for our needs here in graph theory; we don’t

need the full blown definition of an n-manifold for n 6= 2) is given in another set

of Differential Geometry (MATH 5310) notes on 1.9. Manifolds. A less rigorous,

informal PowerPoint presentation with several animations illustrating what it looks

like to “live” in various 2-manifolds is given in my online talk on The Big Bang

and the Shape of Space.

Definition. A surface is a connected 2-dimensional manifold. The cylinder may

be obtained by gluing together two opposite sides of a rectangle. The Möbius band

may be obtained by gluing together two opposite sides of a rectangle after making

one half-twist. The torus may be obtained by gluing together the two open ends

of a cylinder. The Klein bottle may be obtained by gluing together the two open

https://faculty.etsu.edu/gardnerr/5310/notes-Dodson-Poston/Dodson-Poston-VII-2.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/IX-6.pdf
https://faculty.etsu.edu/gardnerr/5310/5310pdf/dg1-9.pdf
https://faculty.etsu.edu/gardnerr/SoS/Shape-of-Space-Big-Bang.pptx
https://faculty.etsu.edu/gardnerr/SoS/Shape-of-Space-Big-Bang.pptx
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ends of a cylinder after making one half-twist.

Note. A planes, spheres, cylinders, Möbius band, torus, and Klein bottle are each

examples of surfaces. Figure 10.24 gives pictures of a Möbius band and a torus.

Figure 10.24. (a) The Möbius band and (b) the torus.

A Klein bottle cannot be embedded in R3 without penetrating the walls of the

surface (however, the Klein bottle has the properties of a surface; it can be em-

bedded in R4 without penetrating walls, but this is not really relevant to the Klein

bottle as a surface). The following image is from the Gnuplotting software website

(accessed 1/14/2021).

http://www.gnuplotting.org/klein-bottle/
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Note/Definition. We now break surfaces into two types. Consider an inhabitant

of the Möbius band. If the inhabitant starts at a particular point, goes “around”

the Möbius band, and returns to the starting point then the inhabitant will find

that items in the space that were on its left are now on its right and vice versa.

Another inhabitant of the Möbius band which watches this movement will see

the traveler returned “reversed” with the traveler having his left and right sides

interchanged. My favorite way to illustrate this is with a winking smiley emoji,

since the wink lets us distinguish left from right (this is how I illustrate these ideas

in my PowerPoint presentation on The Big Bang and the Shape of Space). Bondy

and Murty describe this in terms of an ant that crawls on the Möbius band, but in

these discussions we need to consider inhabitants that are in the surface, not on it.

A surface with this type of reversing property is a nonorientable surface. A surface

without this reversing property is an orientable surface. The plane, the sphere,

the cylinder, and the torus are orientable surfaces. The Möbius band, the Klein

bottle, and the “projective plane” (which is a surface formed from a rectangle by

gluing together two opposite sides of a rectangle after making one half-twist and

then by gluing together the other two opposite sides after making one half-twist;

this should not be confused with the finite projective plane mentioned in Exercise

1.3.13) are nonorientable surfaces.

Note/Definition. A surface is closed if it is bounded and has no boundary.

The Möbius band has a boundary which is homeomorphic (that is, continuously

deformable) to a circle, so it is not a closed surface. The plane is not bounded

and so is not a closed surface. The simplest closed surface is the sphere. The

https://faculty.etsu.edu/gardnerr/SoS/Shape-of-Space-Big-Bang.pptx
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“next simplest” is the torus. The closed surfaces other than the sphere are higher

surfaces.

Note. All higher surfaces can be constructed by starting with a sphere and per-

forming two operations. We first give Bondy and Murty’s outline, then we’ll give

some other relevant references. Let S be a sphere, let D1 and D2 be two disjoint

discs of equal radii on S, and let H be a cylinder of the same radius as D1 and D2.

The operation of adding a handle to S at D1 and D2 consists of cutting out D1 and

D2 from S and then bending and attaching H to S is such a way that the rim of

one of the ends of H coincides with the boundary of D1 and the rim of the other

end of H coincides with the boundary D2. A sphere with k handles is the surface

obtained from a sphere by adding k handles, denoted Sk. Surface Sk is of genus k.

The following figure (from the Wikipedia page on Handle Decomposition, accessed

1/14/2021) is of a sphere with 3 handles, S3:

The torus is homeomorphic to a sphere with one handle and the double torus (a “fat

figure 8”; see also Exercise 10.6.2) is homeomorphic to a sphere with two handles.

https://en.wikipedia.org/wiki/Handle_decomposition
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Every closed orientable surface is homeomorphic to a sphere with k handles for

some k ≥ 0.

Note. Now for nonorientable closed surfaces. Let S be a sphere, let D be a

disk on S, and let B be a Möbius band whose boundary has the same length as

the circumference of D. The operation of adding a cross-cap to S at D consists

of attaching B to S so that the boundaries of D and B coincide. The surface

obtained from the sphere by attaching one cross-cap is the projective plane and is

the simplest nonorientable closed surface. A sphere with k cross-caps is denoted

by Nk, the index k being its cross-cap number. Every closed nonorientable surface

is homeomorphic to Nk for some k ≥ 1.

Note. Combining the above claims, we have:

The Classification Theorem for Closed Surfaces.

Every closed surface is homeomorphic to either Sk or Nk, for a suitable

value of k.

We can add both handles and cross-caps to a sphere. The surface obtained from

the sphere by adding k > 0 handles and ` > 0 cross-caps is homeomorphic to N2k+`.

Note. In 1992, John H. Conway of Princeton University gave a completely new

proof of the Classification Theorem. He called it his “Zero Irrelevancy Proof”

(hence, “ZIP”). A very readable and well-illustrated version of the proof is given

in: George Francis and Jeffrey Weeks, Conway’s ZIP Proof, American Mathematical

Monthly, 106, 293–399 (1999). A copy is available on Andrew Ranicki’s webpage

https://www.maths.ed.ac.uk/~v1ranick/papers/francisweeks.pdf
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(accessed 1/14/2021). This is also reprinted as Appendix C in Jeffrey Week’s The

Shape of Space, Second Edition, Basel: Marcel Dekker (2002). A more traditional

proof from a class on algebraic topology is given in James Munkres, Topology, Sec-

ond Edition, Upper Saddle River, NJ: Prentice Hall (2000). We give the statement

of Munkres result here

Theorem 77.5. The Classification Theorem.

Let X be the quotient space obtained from a polygonal region in the

plane by pasting its edges together in pairs. Then X is homeomorphic

either to S2 [a sphere], to the n-fold torus Tn [a sphere with n handles,

Sn], or to the m-fold projective plane Pm [a sphere with k cross-caps,

Nm].

As this version of The Classification Theorem suggests, every closed surface results

from identifying (“gluing”) the sides of some polygon (in fact, this is how we defined

the torus and Klein bottle above). In the terminology of Week’s Shape of Space,

the polygon is the fundamental domain of the surface and the identifying of sides

is related to a type of “modding out” (as is done in a “quotient space,” similar to

the behavior of a quotient group determined by a normal subgroup in the group

theoretic setting). This can be used to illustrate how to embed certain graphs on

surfaces (at least for not-too-complicated surfaces). Figure 10.25 gives embeddings

on the projective plane of K6 and the Petersen graph. We might need to explain

the context some more. The projective plane can be created by identifying points

on the boundary of a disk which are opposite each other. So in Figure 10.25(a),

the six vertices on the outer circle actually only represent three vertices (the top

and bottom vertices are identified, for example). Similarly, in Figure 10.25(b), the

edges that “disappear” on the dotted circle, “reappear” on the opposite side of the
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circle.

Figure 10.25. Embeddings on the projective plane of (a) K6 and (b) the

Petersen graph.

Definition. An embedding G̃ of a graph G on a surface Σ is a cellular embedding

if each of the arcwise-connected regions of Σ\ G̃ is homeomorphic to the open disk.

These regions are the faces of G̃, and their number is denoted f(G̃).

Note. Bondy and Murty comment that “. . . all the embeddings that we discuss

are assumed to be cellular.” At least, this is the case for the following theorem and

corollaries of this section. The embedding of K4 on the torus in Figure 10.26(a)

is a cellular embedding, but the embedding on the torus in Figure 10.26(b) is not

cellular.
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Figure 10.26. Two embeddings of K4 on the torus: (a) a cellular embedding,

and (b) a noncellular embedding.

In Figure 10.26(a), the walks 12341 and 124134231 produce the faces:

Notice that edges 13 and 24 are traversed twice in the walk because the face is on

both sides of these edges. The faces for Figure 10.26(b) has the faces:
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Since one face is a cylinder which is not homeomorphic to the open disk, then this

embedding is not cellular. In both embeddings of Figure 10.26, edge 13 with edges

12 and 23 cut the torus into a cylinder. In (1), edge 24 then cuts open the cylinder,

but in (b) it does not.

Definition. The Euler characteristic of a closed surface Σ, denoted c(Σ), is defined

as:

c(Σ) =

 2− 2k if Σ is homeomorphic to Sk

2− k if Σ is homeomorphic to Nk.

Note. The next result is a generalization of Euler’s Formula (Theorem 10.19).

For a proof, see Section 3.1. “Classification of Surfaces” in Bojan Mohar and

Carsten Thomassen’s Graphs on Surfaces, Baltimore: Johns Hopkins University

Press (2001).

Theorem 10.37. Let G̃ be a (cellular) embedding of a connected graph G on a

surface Σ. Then v(G̃)− e(G̃) + f(G̃) = c(Σ).

Note. The sphere S0 has Euler characteristic 2− 2k = 2− 2(0) = 2. By Theorem

10.4, a graph is embeddable on the plane if and only if is embeddable on the sphere.

Also, the stereographic projection used in the proof of Theorem 10.4 maps faces

on the sphere bijectively to faces on the plane, so Theorem 10.37 implies for both

the plane and the sphere that v(G) − e(G) + f(G) = 2 and in this way Theorem

10.37 generalizes Euler’s Formula.
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Note. The following two corollaries follow easily from Theorem 10.37 and the

proof is to be given in Exercise 10.6.3.

Corollary 10.38. All (cellular) embeddings of a connected graph on a given

surface have the same number of faces.

Corollary 10.39. Let G be a simple connected graph that is (cellularly) embed-

dable on a surface Σ. Then m ≤ 3(n− c(Σ)).

Note. In Corollaries 10.23 and 10.24, K5 and K3,3 are shown to be nonplanar

using Euler’s Formula. Similarly, Theorem 10.37 (or its corollaries) can be used to

show that certain graphs are not cellularly embeddable on a surface (see Exercise

10.6.4).

Note. Just as a dual of a planar graph can be defined for a given planar em-

bedding, we can also define the dual of a graph given a cellular embedding on a

surface. Figure 10.27 illustrates the dual relationship of K6 (where the vertices

are represented by open circles) and the Petersen graph (where the vertices are

represented by closed disks) on the projective plane (remember the interpretation

of the projective plane diagram as discussed in connection with Figure 10.25).
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Figure 10.27 (and book cover). Dual embeddings of K6 (with vertices

represented by open circles) and the Petersen graph (with vertices represented by

closed disks).

Compare this to the middle drawing of the Petersen graph in Figure 1.9 in order

to recognize the Petersen graph. Notice that this is the image on the cover of the

text book.

Definition. An embedding G̃ of a graph G on a surface is a circular embedding if

all the faces of G̃ are bounded by cycles.

Note. We argued in Section 9.2 that all faces of a loopless 2-connected plane

graph are bounded by cycles. This does not hold for other surfaces, as we see in the

embedding of K4 on the torus given in Figure 10.26(b) (the noncellular embedding).

Related to this is the following conjecture due to F. Jaeger (it appeared in “A

Survey of the Cycle Double Cover Conjecture,” in Cycles in Graphs (Burnaby,

B.C., 1982), 1–12, North-Holland Mathematical Studies, Volume 115, Amsterdam:

North Holland.
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Conjecture 10.40. The Orientable Embedding Conjecture.

Every loopless 2-connected graph has a circular embedding on some orientable

surface.
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