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Section 13.2. Expectation

Note. In this section, we define the expectation (or “expected value”) of a finite

random variable. We give a proof of The Crossing Lemma based on expectation

and give two results from combinatorial geometry based on The Crossing Lemma.

We also introduce an asymptotic notation related to probability, define the concept

of “almost surely” and give a proof of an almost surely upper bound on the stability

number of a graph in Gn,p (using Markov’s Inequality).

Definition. The average value, or mean, of a random variable X is its expectation,

denoted E(X) and is E(X) =
∑
ω∈Ω

X(ω)P (ω).

Note. The expectation E(X) is just the weighted mean of X where the values

X(ω) are weighted by the amount P (ω). As an example, consider the probability

space G3,p of Figure 13.1 again.

Figure 13.1. The probability space G3,p.
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With X as the random variable denoting the number of components X(G) of graph

G ∈ G3,p we have the expectation

E(X) = 3× (1− p)3 + 2× 3p(1− p)2 + 1× (3p2(1− p) + p3) = 2− 2p− p3.

Note. Let X and Y be random variables on probability space (Ω, P ) and let

r, s ∈ R. Then rX + sY is a random variable on (Ω, P ) and

E(rX + sY ) =
∑
ω∈Ω

(rX(ω) + sY (ω))P (ω)

= r
∑
ω∈Ω

X(ω)P (ω) + s
∑
ω∈Ω

Y (ω)P (ω) = rE(X) + sE(Y ). (13.4)

So the expectation is linear. Also, if XA is an indicator random variable then

E(XA) =
∑
ω∈Ω

XA(ω)P (ω) =
∑

ω∈Ω,XA(ω)=1

P (ω) = P (XA = 1). (13.5)

Note. Recall that for a drawing G̃ of a graph G in the plane, two edges of G̃

cross if they meet at a point other than a vertex of G̃. Each such point is called a

crossing of the two edges. The crossing number of G, denoted cr(G), is the least

number of crossings in a drawing of G in the plane (see Exercise 10.1.8).

Note 13.2.A. Let G be a simple planar graph (notice that random graphs are, by

definition, simple). By Corollary 10.21, if n ≥ 3 then m ≤ 3n − 6. In particular,

if n ≥ 3 then m ≤ 3n. In fact, if n = 1 then m = 0 and this inequality holds. If

n = 2 then m ∈ {0, 1} and the inequality holds. So for all simple planar graphs we
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have

m ≤ 3n, (∗)

In Exercise 10.3.1, the inequality m ≤ 3n − 6 of Corollary 10.21 is to be used to

show that for any simple graph G, cr(G) ≥ m−3n+6. We can similarly use (∗) to

show that for any simple graph G, cr(G) ≥ m− 3n (which we can also derive from

Exercise 10.3.1). Bondy and Murty call the inequality cr(G) ≥ m− 3n the “trivial

lower bound” on the crossing number. We use this in the proof of the following

stronger lower bound on the crossing number.

Lemma 13.1. The Crossing Lemma.

Let G be a simple graph with m ≥ 4n. Then cr(G) ≥ 1

64

m3

n2 .

Note. The Crossing Lemma was given in 1982 by M. Ajtai, V. Chvátal, M. M.

Newborn, and E. Szemerédi and independently in 1983 by F. T. Leighton. The

proof given here is due to N. Alon; see N. Alon and J. H. Spencer’s The Proba-

bilistic Method 2nd Edition, Wiley-Interscience Series in Discrete Mathematics and

Optimization (2000). Recently, Eyal Ackerman in “On Topological Graphs with at

Most Four Crossings per Edge,” Computational Geometry, 85: 101574, 31 pages

(2019) proved the related results:

• Let G be a simple graph with m ≥ 7.5n. Then cr(G) ≥ 1

33.75

m3

n2 .

• Let G be a simple graph with m ≥ 7n. Then cr(G) ≥ 1

29

m3

n2 .
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Note. L. A. Székely in “Crossing Numbers and Hard Erdös Problems in Discrete

Geometry,” Combinatorics, Probability and Computing 6, 353–58 (1997) used The

Crossing Lemma to easily derive a number of theorems in combinatorial geometry

(the existing proofs at the time were complicated). We’ll present two of these.

Since the proofs are based on The Crossing Lemma, it can be argued that they

are based ultimately on the expectation of random variables (though their state-

ments, like The Crossing Lemma, make no explicit mention of random variables or

expectations).

Note. To introduce some ideas from combinatorial geometry, consider a set of n

points in the plane. For a given k ∈ N, we could ask how many lines can pass

through at least k points. For example, if n is a perfect square and the points are

arranged in a square
√

n ×
√

n grid, there are 2
√

n + 2 lines which pass through
√

n points (namely,
√

n horizontal lines passing through each “row” of
√

n points,
√

n vertical lines passing through each “column” of
√

n points, and 2 lines passing

through the diagonals of the grid). The next result considers a bound on the

number of lines which pass through more than k points.

Theorem 13.2. Let P be a set of n points in the plane, and let ` be the number of

lines in the plane passing through at least k+1 of these points, where 1 ≤ k ≤ 2
√

2n.

Then ` < 32n2/k3.

Note. The next result concerns the maximum number of pairs of points there can
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be, among a set of n points in the plane, whose distance is exactly one.

Theorem 13.3. Let P be a set of n points in the plane, and let k be the number

of pairs of points of P at unit distance. Then k < 5n4/3.

Note. We now consider a sequence of probability spaces (Ωn, Pn) for n ∈ N.

In particular, we consider the probability spaces Gn,p where p is a function of n

and p(n) → 0 as n → ∞ (because “it is with sparse graphs that we are mostly

concerned”—see Bondy and Murty page 339).

Definition. Given a sequence (Ωn, Pn) of probability spaces (where n ∈ N), a

property A is said to be satisfied almost surely if Pn(An) → 1 as n → ∞, where

An = A ∩ Ωn.

Definition. If f : N → R and g : N → R are two functions such that g(n) > 0 for

n sufficiently large, we write:

f � g if f(n)/g(n) → 0 as n →∞,

f � g if f(n)/g(n) →∞ as n →∞, and

f ∼ g if f(n)/g(n) → 1 as n →∞.

Note. Markov’s Inequality is seen in Mathematical Statistics 1 (MATH 4047/5047).

See my online notes for Mathematical Statistics 1 on 1.10. Important Inequalities

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-10.pdf
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where a proof of Markov’s Inequality is given for a continuous random variable (the

case for a discrete random variable being left as an exercise).

Proposition 13.4. Markov’s Inequality

Let X be a nonnegative finite random variable on probability space (Ω, P ) and

t > 0. Then P (X ≥ t) ≤ E(X)

t
.

Note. Since we will usually consider random variables Xn in probability space

(Ωn, Pn) as a quantity, then the following version of Markov’s Inequality is sufficient

for our purposes.

Corollary 13.5. Let Xn be a nonnegative integer-valued random variable in a

probability space (Ωn, Pn) where n ∈ N. If E(Xn) → 0 as n → ∞, then P (Xn =

0) → 1 as n →∞.

Note 13.2.B. Let G ∈ Gn,p be a random graph and let X be the number of

triangles of G. For S ⊆ V with |S| = 3, let AS be the event that the induced

subgraph of G, G[S], is a triangle and let XS be the indicator random variable

for AS. Then X =
∑

S⊆V,|S|=3

XS. Also, P (AS) = p3 (the probability that the three

edges of the triangle with vertex set S are in G). By linearity of expectation and

equation (13.5),

E(X) = E

 ∑
S⊆V,|S|=3

XS

 =
∑

S⊆V,|S|=3

E(XS)
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=

(
n

3

)
p3 =

n(n− 1)(n− 2)

6
p3 =

n2 − 3n + 2

6
np3 < (np)3

since f(n) = n2−(n2−3n+2)/6 is strictly increasing (since f ′(n) = 2n−(2n−3)/6 =

(n + 3)/6 > 0 for n ≥ 1) and f(1) = 1, so that n2 − (n2 − 3n + 2)/6 ≥ 1 > 0 for

n ≥ 1. So if pn → 0 as n →∞ then G almost surely is triangle-free.

Note. Recall that a stable set (or an “independent set”) in a graph G is a set of

vertices no two of which are adjacent. The cardinality of a maximum stable set in

G is the stability number of G, denoted α(G) (see Section 12.1. Stable Sets).

Theorem 13.6. A random graph in Gn,p almost surely has stability number at

most d2p−1 log ne.

Note. Other applications of the probabilistic method are given in the exercises

(especially applications to hypergraphs). In commemoration of Dr. Teresa Haynes,

a frequent instructor of this class at ETSU between 2000 and 2018, notice that a

“dominating set” in a graph is defined in Exercise 13.2.13 (Dr. Haynes’ research

specialty centers on domination theory; see 1.5. Directed Graphs for a reference to

a couple of her books).
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https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-1-5.pdf

