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Section 13.3. Variance

Note. In this section, we define the variance of a random variable on a finite

sample space and state Chebyshev’s Inequality in this setting. We give an almost

surely result on the value of the stability number of a random graph in Gp,1/2.

Note. Recall that the variance of a random variable (finite or infinite, discrete

or continuous) is E((X − µ)2). See my online notes for Mathematical Statistics

1 on 1.9. Some Special Expectations and for Measure Theory Based Probability

on 4.10. Expectation. Our definition here is the same, but since we consider finite

sample spaces then expectation and things that follow from it (such as variance)

are computed using finite sums.

Definition. The variance of random variable X on a finite sample space is

V (X) = E((X − E(X))2).

Note. Since expectation is linear, we can also calculate the variance as

V (X) = E((X − E(X))2) = E(X2 − 2XE(X) + (E(X))2)

= E(X2)− 2E(X)2 + E(X)2 = E(X2)− E(X)2 = E(X2)− E2(X).

If we denote the mean of X as µ then µ = E(X) and we have V (X) = E(X2) −

E2(X) = E(X2) − µ2, as we see in Mathematical Statistics 1 (see Note 1.9.A of

1.9. Some Special Expectations). For X an indicator random variable (for which

X ∈ {0, 1} and X = X2) we have E(X2) = E(X) so that V (X) = E(X)−E2(X) ≤

E(X).

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-9.pdf
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Note. In Mathematical Statistics 1, we state Chebyshev’s Inequality for X a

random variable (finite or infinite, discrete or continuous) where E(X2) < ∞: for

every k > 0, P (|X − µ| ≥ kσ) ≤ 1

k2 (see Theorem 1.10.3 in my Mathematical

Statistics 1 online notes on 1.10. Important Inequalities, and Theorem 4.10.7 in my

online notes for Measure Theory Based Probability on 4.10. Expectation). Bondy

and Murty describe Chebyshev’s Inequality as “[it] bounds the divergence of a

random variable from its mean. It plays, in some sense, a complementary role

to that of Markov’s Inequality.” Our statement is equivalent to that given in

Mathematical Statistics and the other settings, as we will show.

Theorem 13.7. Chebyshev’s Inequality.

Let X be a random variable on a finite probability space and let t > 0. Then

P (|X − E(X)| ≥ t) ≤ V (X)

t2
.

Note. If we replace random variable X with random variable Y = X/σ where

σ =
√

V (X) (i.e., σ is the standard deviation of X) then by the linearity of

expectation we have E(Y ) = E(X/σ) = E(X)/σ and

V (Y ) = V (X/σ) = E((X/σ − E(X/σ))2) = E((X − E(X))2)/σ2

= V (X)/σ2 = σ2/σ2 = 1

then Theorem 13.7 gives P (|Y − E(Y )| ≥ t) ≤ V (Y )

t2
or P (|X/σ − E(X)/σ| ≥

t) ≤ 1

t2
or P (|X − E(x)| ≥ tσ) ≤ 1

t2
, which is the same version of Chebyshev’s

Inequality given in the other sources (replacing t > 0 here with k > 0).

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-10.pdf
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Note. We will use the following form of Chebyshev’s Inequality in establishing

“almost surely” results.

Corollary 13.8. Let Xn be a random variable in a finite probability space (Ωn, Pn)

where n ≥ 1. If E(Xn) 6= 0 and V (Xn) � E2(Xn), then P (Xn = 0) → 0 as n →∞.

Definition. The covariance C(X, Y ) of two random variables X and Y on a finite

probability space is C(X, Y ) = E(XY )− E(X)E(Y ).

Note 13.3.A. Let G ∈ Gn,p be a random graph and let X be the random variable

representing the number of triangles in G. In Note 13.2.B we saw that if pn → 0

then G is almost surely triangle-free. We now show that if pn →∞ then G almost

surely has at least one triangle. For S ⊆ V with |S| = 3, let AS be the event

that the induced subgraph, G[S], is a triangle and let XS be the indicator random

variable for AS. Then X =
∑

S⊆V,|S|=3

XS. As shown in Note 13.2.B, E(X) =

(
n

3

)
p3.

It is to be shown in Exercise 13.3.1 that

V (X) ≤ E(X) +
∑

S⊆V,|S|=3,S 6=T

C(XS, XT ). (∗)

If |S ∩ T | ∈ {0, 1} then G[S] and G[T ] can have no common edges, so E(XSXT ) =

p6 = E(XS)E(XT ) and hence the covariance is C(XS, XT ) = 0. If |S ∩T | = 2 then

G[S] and G[T ] have one potential edge in common, so C(XS, XT ) = E(XSXT ) −

E(XS)E(XY ) = p5 − p6 (since XS and XT are indicator random variables then

XSXT = 1 only when G[S] includes each of the three relevant edges and G[T ] con-
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tains the other two relevant edges [i.e., those two edges not in G[S]], and otherwise

XSXT = 0 so that E(XSXT ) = p5). Now we can choose the elements of S and T

where |S ∩ T | = 2 by first choosing the two distinct elements of S ∩ T in any way

(which can be done in
(
n
2

)
ways), then choosing the third element of S (which is

distinct from the two elements of S ∩ T and so can be done in n − 2 ways), and

finally choosing the third element of T (which is distinct from the three elements

already chosen, which can be done in n− 3 ways). So there are

(
n

2

)
(n− 2)(n− 3)

ways to choose a pair of sets S, T ⊆ V with |S| = |T | = 3, and |S ∩ T | = 2. So by

(∗)

V (X) ≤ E(X) +
∑

S⊆V,|S|=3,S 6=T

C(XS, XT )

= E(X) +
∑

S⊆V,|S|=3,|S∩T |=0

C(XS, XT ) +
∑

S⊆V,|S|=3,|S∩T |=1

C(XS, XT )

+
∑

S⊆V,|S|=3,|S∩T |=2

C(XS, XT )

=

(
n

3

)
p3 + 0 + 0 +

(
n

2

)
(n− 2)(n− 3)(p5 − p6)

≤
(

n

3

)
p3 +

(
n

2

)
(n− 2)(n− 3)p5.

Since E(X) =
(
n
3

)
p3 then

V (X)

E2(X)
≤ 1(

n
3

)
p3

+

(
n
2

)
(n− 2)(n− 3)p5((

n
3

)
p3

)2

=
6

n(n− 1)(n− 2)p3 +
36n(n− 1)(n− 2)(n− 3)p5

2n2(n− 1)2(n− 2)2p6

=
6

n(n− 1)(n− 2)p3 +
18(n− 3)

n(n− 1)(n− 2)p

<
6

n(n/2)(n/2)p3 +
18

n(n/2)p
since n− 1 > n/2, n− 2 > n/2,
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and
n− 3

n− 2
< 1 for n ≥ 3

=
24

(np)3 +
36

n(np)
.

Now if pn → ∞ then n → ∞ (and p 6= 0) since p ≤ 1. So if pn → ∞ then

V (X)/E2(X) → 0 as n →∞; that is, V (X) � E2(X). So (replacing X here with

Xn) by Corollary 13.8, P (X = 0) → 0 as n → ∞. That is, if pn → ∞ as n → ∞

the G almost surely has at least one triangle.

Note. In Theorem 13.6, we proved that for G a random graph in Gn,p, the stability

number α(G) is almost surely at most d2p−1 log ne. If p = 1/2, it is to be shown in

Exercise 13.2.11 that this bound can be refined to d2 log2 ne. Considering p = 1/2

again, we use Corollary 13.8 to give a sharper “almost surely” bound on α(G). The

result is originally due to Bela Bollobás and Paul Erdös (published in Mathematical

Proceedings of the Cambridge Philosophical Society) and, independently, D. Matula

in 1976.

Theorem 13.9. Let G ∈ Gn,1/2. For 0 ≤ k ≤ n, set f(k) =

(
n

k

)
2−(k

2) and let

k∗ be the least value of k for which f(k) is less than one. Then almost surely the

stability number of G, α(G), takes one of the three values k∗ − 2, k∗ − 1, or k∗.

Note. Theorem 13.9 can be refined under hypotheses concerning the rate of growth

of f(k∗) as follows; the proof is to be given in Exercise 13.3.2.
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Corollary 13.10. Let G ∈ Gn,1/2, and let f and k∗ be as defined in Theorem 13.9.

Then either:

1. f(k∗) � 1, in which case almost surely α(G) is equal to either k∗−2 or k∗−1,

or

2. f(k∗ − 1) � 1, in which case almost surely α(G) is equal to either k∗ − 1 or

k∗.

Note. Of course, it follows from Corollary 13.10 that if both f(k∗) � 1 and

f(k∗ − 1) � 1 then almost surely α(G) = k∗ − 1.
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