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Section 13.5. The Local Lemma

Note. In this section, we state and prove The Local Lemma which concerns a

collection of events for which the intersection of the events has positive probability.

We then use it to address two colourable hypergraphs, even cycles in digraphs, and

“linear arboricity.”

Note 13.5.A. We can use the probabilistic method to show the existence of certain

graph properties. For example, if we are interested in a proper k-colouring of graph

G, we could consider randomly colouring the vertices of G with k colours and then

calculate the probability that the colouring is proper. If this probability is nonzero

then G must be k-colourable. Now we would have a k-colouring if for each edge e

in G, the ends of e receive a different colour. let Ae be the event that the ends of

e are assigned the same colour (this is a “bad” event). We want the complement

events Ae to occur for all edges e of G. So we are interested in P (∩e∈EAe). If we

can show this probability is positive then G must be k-colourable.

Note. In general, if {Ai}n
i=1 is a set of “bad” events in a finite probability spce

(Ω, P ) then we are interested in P
(
∩i∈NAi

)
where N = {1, 2, . . . , n} If the events

Ai are independent and each occurs with probability strictly less than one, then by

Exercise 13.2.2

P
(
∩i∈NAi

)
=

∏
i∈N

P (Ai) =
∏
i∈N

(1− P (ai)) > 0,

as “desired.”
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Note. It is more common that a set of events are not independent. For example

if edges e, f, g of G are edges of a triangle then, as is shown in Exercise 13.1.1,

P (Ae ∩ Af ∩ Ag) = 1/k2 > 1/k3 = P (A1)P (Af)P (Ag).

But Erdös and Lovász (..) showed that P
(
∩i∈NAi

)
will be positive if the events Ai

occur with low probability an dare “to be a sufficient extent” independent of one

another. Details are given below in The Local Lemma.

Definition. If {Ai | i ∈ S} is a set of events in a finite probability space, then we

denote as AS the intersection AS = ∩i ∈ SAi. An event Ai is independent of a set

of events {Aj | j ∈ J} if for all subsets S ⊆ J we have P (Ai ∩AS) = P (Ai)P (AS).

Theorem 13.12. The Local Lemma.

Let Ai, where i ∈ N , be events in a finite probability space (Ω, P ) and let Ni ⊆ N

where i ∈ N . Suppose that, for all i ∈ N ,

(i) Ai is independent of the set of events {Aj | J ∈ Ni},

(ii) for each i ∈ N , there is a constant pi where 0 < pi < 1, and for each i ∈ N we

have P (Ai) = pi

∏
j∈Ni

(1− pj).

Set Bi = Ai where i ∈ N . Then, for any two disjoint subsets R,S ⊆ N ,

P (BR ∩BS) ≥ P (BR)
∏
i∈S

(1− pi). (13.15)

In particular, when R = ∅ and S = N ,

P
(
∩i∈NAi

)
≥

∏
i∈N

(1− pi) > 0. (13.16)
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Note. In The Local Lemma, if the Ai are mutually independent then the pi

defined in point (ii) are probabilities (or more precisely, they can be probabilities;

other values can be used because of all the inequalities) and P (Ai) = pi (so that

P (Ai) = 1− pi and then the non-strict inequality in (13.16) becomes an equality).

When the Ai are not independent, the value pi associated with Ai is reduced by

the “compensation factor”
∏

j∈Ni
(1− pj) (using the term of Bondy and Murty).

Note. In our applications, we don’t need the full power of The Local Lemma but

instead we need a special case. The special case requires the following definition.

Definition. Consider the events Ai, where i ∈ N , in a finite probability space, and

the subsets Ni of N such that Ai is independent of {Aj | j 6∈ Ni}. Form the (strict

or “simple”) digraph D with vertex set N and arc set {(i, j) | i ∈ N, j ∈ Ni}. Such

a digraph is a dependence digraph; if it is symmetric then it is called a dependency

graph (in which we replace two oppositely oriented arcs by an edge, as is a standard

of Bondy ad Murty; see page 33).

Note. In the example in Note 13.5.A where the vertices of graph G are randomly

assigned one of k colours, we denoted as Ae the event that the ends of e are assigned

the same colour. Then event Ae is independent of {Af | f is nonadjacent to e}. So

in the dependency graph for the events Ae where e ∈ G, the vertex set in E(G)

and two vertices e and f are adjacent in the dependency graph is edges e and f are

adjacent in G. This is exactly the line graph of G. Bondy and Murty comment:

“In general, there are many possible choices of dependency digraph (or graph) for

a given set of events. . . ” (page 357).
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Theorem 13.14. The Local Lemma—Symmetric Version.

let Ai, where i ∈ N , be events in a finite probability space (Ω, P ) having a depen-

dency graph with maximum degree d. Suppose P (Ai) < 1/(e(d + 1)) for all i ∈ N

(where “e” here is the base of the natural log function). Then P (∩i∈NAi) > 0.

Note. We now give applications of the symmetric version of The Local Lemma

to three areas: two colourable hypergraphs, even cycles in digraphs, and “linear

arboricity” (to be defined below).

Theorem 13.15. Let H = (V,F) be a hypergraph in which each edge has at least

k elements and meets at most d other edges. If e(d + 1) ≤ 2k−1 (again, “e” here is

the base of the natural log function), then H is 2-colourable.

Corollary 13.16. Let H = (V,F) be a k-uniform k-regular hypergraph, where

k ≥ 9. Then H is 2-colourable.

Note. The next result, due to N. Alon and N. Linial in 1989, uses The Local Lemma

to prove that all diregular digraphs of sufficiently high degree have directed cycles

of even lengths.

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph where

k ≥ 8. Then D contains a directed even cycle.
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Definition. A linear forest in a graph G = (V, E) is a subgraph of G, each

component of which is a path. When G is decomposed into as few as possible

linear forests, the number of linear forests is the linear arboricity of G, denoted

la(G).

Note 13.5.B. Every graph has a decomposition into linear forests since a single

edge is a linear forest. If G = K2n, then the linear arboricity is equal to n, because

K2n admits a decomposition into Hamilton paths by Exercise 2.4.6. For an arbitrary

graph G, we’ll see in Chapter 17 (“Edge Colourings”) that the linear arboricity is

bounded above by the “edge chromatic number” (see Section 17.1. Edge Chromatic

Number), the minimum number of 1-factors (see Section 16.4. Perfect Matchings

and Factors) into which the graph can be decomposed. We’ll see in Vizing’s Theo-

rem (Theorem 17.4) that the edge chromatic number is bounded above by ∆ + 1,

so we have for G that la(G) ≤ ∆+1. For a lower bound on the linear arboricity we

can just count edges. For example, if G is 2r-regular then m = (2rn)/2 = rn and,

because no linear forest has more than n− 1 edges (namely, when the linear forest

is a Hamilton path), then la(G) ≥
⌈

rn

n− 1

⌉
=

⌈
r

n

n− 1

⌉
= r + 1. We’ll show below

that in fact la(G) = r + 1 for 2r-regular graphs of sufficiently large girth. We need

the next lemma (the proof of which uses The Local Lemma).

Lemma 13.18. Let G = (V, E) be a simple graph and let {V1, V2, . . . , Vk} be a

partition of V into k sets, each of cardinality at least 2e∆ (again, “e” here is the

base of the natural log function). Then there is a stable set S in G such that

|S ∩ Vi| = 1 for 1 ≤ i ≤ k.
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Note. Recall from Section 2.1 (“Subgraphs and Supergraphs”) that the girth

of a graph G is the length of the shortest cycle in G. Recall form Section 2.2

(“Spanning and Induced Subgraphs”) that a k-factor of a graph is a spanning k-

regular subgraph. We now use Lemma 13.18 (which is based on The Local Lemma)

to show the bound on the linear arboricity of a 2r-regular graph given in Note 13.5.B

above is in fact sharp (i.e., the inequality reduces to equality).

Theorem 13.19. Let G = (V, E) be a simple 2r-regular graph with girth at

least 2e(4r − 2) (again, “e” here is the base of the natural log function). Then

la(G) = r + 1.
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