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Chapter 14. Vertex Colourings

Section 14.1. Chromatic Number

Note. In Section 11.1. Colourings of Planar Maps we introduced vertex colourings

in the context of the Four-Colour Conjecture. In this section we state (or restate)

the definitions we need to address vertex colourings. We state a heuristic to find a

colouring of a given graph (this will require us to recall some of the algorithms and

results stated in Section 6.1. Tree Search). We also consider colourings of digraphs.

Definition. A k-vertex colouring (or simply k-colouring) of graph G = (V, E) is a

mapping c : V → S, where S is a set of k colours. A colouring c is proper if no two

adjacent vertices are assigned the same colour. A graph is k-colourable if it has a

proper k-vertex colouring.

Note. When we consider edge colourings in Chapter 17, we include the description

“edge,” so when you hear “coluring” it indicates a vertex colouring. We usually

denote the set of colours as {1, 2, . . . , k}. Notice that a graph with loops cannot be

properly coloured.

Definition. For k-vertex colouring c : V → S where S = {1, 2, . . . , k} is the set of

colours, the set Vi = {v ∈ V | c(v) = i} is the ith colour class of the colouring.
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Note 14.1.A. A k-colouring of a graph is equivalent to a partitioning {V1, V2, . . . , Vk}

of the vertex set V where Vi are colour classes. If the k-colouring is proper, then

each colour class is a stable set (i.e., an “independent set”) in the graph. In this

chapter, we are only interested in proper colourings. In this chapter we refer to

a proper colouring as just a “colouring” and a proper k-colouring as a

“k-colouring.” Notice then that a graph is 2-colourable if and only if it is bipartite

(and then the partite sets determine the colour classes and conversely). A loopless

graph is k-colourable if and only if its underlying simple graph is k-colourable. So

in this chapter we restrict our attention to simple graphs.

Definition. The minimum k for which graph G is k-colourable is the chromatic

number of G, denoted χ(G). If χ(G) = k then G is k-chromatic.

Note. Every odd cycle is 3-colourable. Every even cycle is 2-colourable (because

even cycles are bipartite graphs). The complete graph Kn is n-chromatic. Recall

that the stability number of graph G, α(G), is the cardinality of a maximum stable

set in G. Since a stable set corresponds to a colour class in a k-colouring by Note

14.1.A, then

χ(G) ≥ n/α(G) (14.1)

because the number of stable sets in G is at least n/α(G).

Note. Colourings of graphs are useful in applications requiring certain partitions,

as the next example illustrates.
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Example 14.1. Examination Scheduling. The students at a small university

have finals in all the courses they take. Exams in different courses cannot be held

at the same time if the courses have students in common. How can all the exams be

organized in as few parallel sessions as possible? To find such a schedule, consider

the graph G whose vertex set is the set of all courses, with two courses being joined

by an edge if they give rise to a conflict. Stable sets of G correspond to conflict-free

groups of courses. Therefore the required minimum number of parallel sessions is

the chromatic number of G.

Note 14.1.B. If graph G is k-colourable and H is a subgraph of G then H is

certainly k-colourable. So, in terms of chromatic numbers, χ(G) ≥ χ(H). If G

contains some clique Kr then χ(G) ≥ χ(Kr) = r. So in terms of clique number ω

(recall that ω(G) is the maximum size, that is maximum number of vertices, of a

clique of graph G) we have χ ≥ ω. This inequality can be strict, as illustrated by

odd length cycles of length at least 5, since these graphs have ω = 2 and χ = 3.

Note. A polynomial-time algorithm exists for determining whether or not a graph

is bipartite (see Exercise 6.1.3 where the Breadth-First Search polynomial-time

algorithm is to be modified to test for bipartite-ness). But, according to Bondy

and Murty, the problem of determining if a graph is 3-colourable is NP-complete,

so that the problem of finding the chromatic number of a graph is NP-hard (see

Chapter 8, “Complexity of Algorithms,” for a discussion of this terminology). So

computationally, we settle for an approximation of the chromatic number. Recall
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from Section 8.5, “Greedy Heuristics,” Bondy and Murty state: “A heuristic is a

computational procedure, generally based on some simple rule, which intuition tells

one should usually yield a good approximate solution to the problem at hand. . . . a

greedy heuristic is a procedure which selects the best current option at each stage,

without regard to future consequences.” We wouldn’t expect a greedy heuristic to

yield an optimal result, but as we saw in Section 8.5 with the Bor
◦
uvka-Kruskal Al-

gorithm (Algorithm 8.22) and Theorem 8.23, sometimes it does produce an optimal

result (a minimal weight spanning tree in a weighted graph, in the Bor
◦
uvka-Kruskal

Algorithm). We now state a greedy heuristic to get a colouring of a graph.

Heuristic 14.3. The Greedy Colouring Heuristic.

Input: a graph G

Output: a colouring of G

1. Arrange the vertices of G in a linear order: v1, v2, . . . , vn.

2. Colour the vertices one by one in this order, assigning to vi the smallest positive

integer not yet assigned to one of its already-coloured neighbors.

Note. The number of colours needed in the Greedy Colouring Heuristic can depend

on the linear ordering of the vertices. For example if G = C6 with the linear order

given in the figure below (left) then 3 colours are needed by the Greedy Heuristic.

Applying Step 2 gives (using actual colour names, ordered as red, blue, green,

instead of numbers) v1 is red, v2 is red, v3 is blue, v4 is blue, v5 is green, and v6

is green. If we use the linear order given in the figure below (right) then 2 colours
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are needed by the Greedy Heuristic (not surprising, since C6 is bipartite).

However, it is to be shown in Exercise 14.1.9 that for any graph G, there is an

ordering of its vertices such that the greedy heuristic yields a colouring with χ(G)

colours. Though this observation is not useful to find χ(G) since one does not know

the linear ordering in advance.

Lemma 14.1.A. The number of colours needed in the Greedy Colouring Heuristic

(Heuristic 14.3) is at most ∆ + 1. Therefore, for any graph G, χ(G) ≤ ∆ + 1.

Note. The bound ∆ + 1 on χ(G) of Lemma 14.1.A is best possible (or “sharp”),

as seen when G is an odd length cycle or a complete graph. In fact, these are the

only graphs for which the inequality in Lemma 14.1.A reduces to equality. This

was shown by R.L. Brooks in “On Colouring the Nodes of a Network,” Mathe-

matical Proceedings of the Cambridge Philosophical Society, 37(2), 194–197 (1941).

Before stating and proving the result, recall that the Depth-First Search algorithm

(Algorithm 6.4) produces a rooted spanning tree for any connected graph. In Ex-

ercise 6.1.11 it is to be shown that for connected graph G, if every DFS-tree is a

Hamilton path, then G is either a cycle, a complete graph, or a complete bipartite

graph in which both partite sets are the same size (i.e., G = C|V |, G = K|V |, or

G = K|V |/2,|V |/2).
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Theorem 14.4. Brooks’ Theorem.

If G is a connected graph, and is neither an odd cycle nor a complete graph, then

χ ≤ ∆.

Definition. A (proper) vertex colouring of digraph D is a vertex colouring of its

underlying graph G, and its chromatic number, χ(D), is the chromatic number

χ(G) of G.

Note. The above definition may lead one to think that vertex colourings of di-

graphs tells us little that we didn’t already know from vertex colourings of graphs.

However, the next result shows there are “directed properties” related to digraph

vertex colourings. This result from the late 1960s is due to T. Gallai and B. Roy.

Theorem 14.5. The Gallai-Roy Theorem.

Every digraph D contains a directed path with χ(D) vertices.

Note. The remainder of the notes for this section are optional. In fact, the material

does not appear in some printings of Bondy and Murty.

Note. Recall that the Gallai-Milgram Theorem (Theorem 12.2) states that for

any digraph D, π(D) ≤ α(D), where π(D) is the least number of directed paths

in a path partition of D and α(D) is the largest stable set (or “independent set”)
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of the underlying graph of D. This beats “a striking formal resemblance” (as

Bondy and Murty put it on page 366) to the Gallai-Roy Theorem (Theorem 14.5).

In a (proper) colouring, each colour class is a stable set (see Note 14.1.A). By

interchanging the roles of directed paths and stable sets (or colour classes), one

theorem is transformed into the other; path partitions become colourings (that is,

partitions of the vertex set into colour classes). However, this discussion does not

address the orthogonality of directed paths and stable sets (recall from Section

12.1. Stable Sets that directed path P and stable set S are orthogonal if they have

one common vertex). An attempt to find a common generalization of the Gallai-

Milgram Theorem and the Gallai-Roy Theorem was conjectured by N. Linial in

1981 (see Exercise 14.1.22). We next discuss a related conjecture, after stating

some necessary definitions.

Definition. Let k be a positive integer. A path partition P is k-optimal if it

minimizes the function
∑
{min{v(P ), k} | P ∈ P}, and a partial k-colouring of a

graph or digraph is a family of k disjoint stable sets. A (directed) path partition

P and partial k-colouring C are orthogonal if every directed path P ∈ P meets

min{v(P ), k} different colour classes of C.

Note. Notice that a 1-optimal path partition is a path partition that is optimal. A

partial 1-colouring is a stable set. In 1982, C. Berge stated the following conjecture

concerning orthogonality, k-optimal path partitions, and partial k-colourings.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-12-1.pdf
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Conjecture 14.6. The Path Partition Conjecture.

Let D be a digraph, k a positive integer, and P a k-optimal path partition of D.

Then there is a partial k colouring of D which is orthogonal to P .

Note. The Path Partition Conjecture has been proved for k = 1 and k = 2. In

Exercise 14.1.22, it is to be shown that Linial’s Conjecture mentioned above is

implied by the Path Partition Conjecture.
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