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Section 14.6. The Adjacency Polynomial

Note. In this section we introduce a multivariate polynomial based on the edges

of a graph (i.e., based on the adjacency structure). We illustrate its connections to

proper colourings and orientation, and use it to show the existence of list colourings.

Definition. Let G be a graph with vertex set V = {v1, v2, . . . , vn}. Set x =

(x1, x2, . . . , xn). The adjacency polynomial of G is the multivariate polynomial

function

A(G,x) =
∏
i<j

{(xi − xj) | vivj ∈ E}.

This is sometimes called simply the graph polynomial.

Note 14.6.A. Let F be a field and c ∈ Fn where c 6= 0. Then c can be regarded

as a function c : V → F where c(vi) = ci (where ci is the ith component of c).

with the elements of F as colours, c yields a proper colouring of G is and only if

xi 6= xj for each vivy ∈ E. That is, A(G, c) 6= 0 if and only if c : V → F is a

proper colouring of G. Recall that a field has no zero divisors; see my online notes

for Introduction to Modern Algebra (MATH 4127/5127) on Section IV.19. Integral

Domains, in particular the definition of integral domain (Definition 19.6) and the

fact that every field is an integral domain (Theorem 19.9). This is why we cannot

use a more general algebraic structure for the colours.

https://faculty.etsu.edu/gardnerr/4127/notes/IV-19.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IV-19.pdf
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Note. Since the number of edges of G is m, then A(G,x) consists of 2m monomial

terms in the expansion before simplification (since there are 2 choices, xi and xj,

in each of the m terms (xi−xj)). Orienting the edge vivj by making vi the tail, we

have each of the 2m orientations of G from the 2m terms of A(G,x). For example,

if G is the graph of Figure 14.10 (left) then its adjacency polynomial is

A(G,x) = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4).

The 25 = 32 terms, after simplification gives
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Notice that a monomial term of he form ±x2
1x2x3x4 results from the three products

x1x1(−x4)x2x3, x1(−x3)x1x2(−x4), and (−x2)x1x2(−x3)(−x4). Each gives an out-

degree sequence for v1, v2,3 , v4 of (2, 1, 1, 1) and there are three orientations of G

with this outdegree sequence, as given in Figure 14.10. Notice that when the three

terms of the form ±x2
1x2x3x4 are added, this results in the single term −x2

1x2x3x4

in the simplified version of A(G,x) given above.
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The signs given in Figure 14.10 are explained below.

Note/Definition. In the complete graph Kn, every pair of vertices are adjacent

so the adjacency polynomial is A(Kn,x) =
∏

1≤i<j≤n

(xi − xj). This multivariate

polynomial is the determinant of the Vandermonde matrix (or the Vandermonde

determinant):

A(K + n,x) =
∏

1≤i<j≤n

(xi − xj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xn−1
1 xn−1

2 · · · xn−1
n

xn−2
1 xn−2

2 · · · xn−2
n

...
... . . . ...

x1 x2 · · · xn

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This equality is to be established in Exercise 8.11 of James Gentle’s Matrix Algebra:

Theory, Computations, and Applications in Statistics, 2nd Edition, Spring (2017)

where, as is common, the transpose of out Vandermonde matrix is considered;

this is the book used in ETSU’s Theory of Matrices (MATH 5090), though when

teaching it I do not cover Chapter 8 “Special Matrices and Operations Useful in

Modelling and Data Analysis” (see my online notes for Theory of Matrices). In

Bondy and Murty’s Exercise 4.6.1 it is to be shown that the number of monomial

terms in the Vandermonde determinant above is n! (s that many terms must cancel

in the 2(n
2) monomials in the expansion of the adjacency polynomial).

https://faculty.etsu.edu/gardnerr/5090/notes.htm
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Definition. Let D be an orientation of graph G. The sign of the orientation is

σ(D) =
∏
{σ(e) | a ∈ A(D)} where

σ(a) =

 +1 if a = (vi, vj) with i < j

−1 if a = (vi, vj) with i > j.

Note. For example, the arcs of the third orientation D of G in Figure 14.10 has arcs

(a1, v2), (v1, v3), (v2, v3), (v3, v4), and (v4, v1). Now σ(v1v2) = σ(v1v3) = σ(v2v3) =

+1 and σ(v4v2) = −1 so that σ(D) = (+1)3(−1) = −1.

Definition. Let G be a graph with n vertices and m edges. Let d = (d1, d2, . . . , dn)

be a sequence of nonnegative integers whose sum is m. The weight of d is w(d) =∑
σD where the sum is taken over all orientations D of G whose outdegree sequence

is d.

Note. We denote xd =
n∏

i=1

xdi

i and then the adjacency polynomial is of the form

A(G,x) =
∑
d

e(d)xd. This is the case because xd is simply the “forms” of the

monomials in A(G,x) and w(d) is the coefficient of the monomial (a sum of +1’s

and −1’s) after simplification.

Note. The “Hilbert Nullstellensatz” (or Zeros Theorem of Hilbert) is a result

of classical algebraic geometry. It is stated and proved in Chapter VIII, “Com-

mutative Rings and Modules,” Section VIII.7., “The Hilbert Nullstellensatz,” of
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Thomas Hungerford’s Algebra, Graduate Texts in Mathematics #73, Springer-

Verlag (1974). This is the book I use in the ETSU Modern Algebra sequence

(MATH 5410, MATH 5420). See my online notes for this sequence on Rings and

Modules (though I do not cover Chapter VIII). For the sake of comparison with

the “Combinatorial Nullstellensatz,” we observe that Hungerford’s statement of

the Nullstellensatz is as follows.

Proposition VIII.7.4. Hilbert Nullstellensatz.

Let F be an algebraically closed extension field of field K and I a proper

ideal of K[x1, x2, . . . , xn]. Let

V (I) = {(a1, a2, . . . , an ∈ F n | g(a1, a2, . . . , an) = 0 for all g ∈ I}.

Then

Rad I = J(V (I)) = f ∈ K[x1, x2, . . . , xn] | f(a1, a2, . . . , an) = 0

for all (a1, a2, . . . , an ∈ V (I)}.

In other words, f(a1, a2, . . . , an) = 0 for every zero (a1, a2, . . . , an) of I

in F n if and only if fm ∈ I for some m ≥ 1.

According to the 2022 manuscript Kriti Goel, Dilip Patil, and Jugal Verma’s “Null-

stellensätze and Applications” (available online on arxiv.org; accessed 6/20/2022),

David Hilbert proved the result in five pages of the third section of his paper on

invariant theory. The reference is: David Hilbert, “Über die vollen Invariantensys-

teme [On Full Invariant Systems],” Mathematische Annalen, 42, 313–373 (1893). A

copy (in German) is online on the European Digital Mathematics Library (accessed

6/21/2022).

https://faculty.etsu.edu/gardnerr/5410/notes-rings.htm
https://faculty.etsu.edu/gardnerr/5410/notes-rings.htm
https://arxiv.org/pdf/1809.02818.pdf
https://eudml.org/doc/157652
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Note. The Combinatorial Nullstellensatz also considers a multivariate polynomial

over a field. The zeros of the polynomial are related to list colourings. It was proved

by Noga Alon in “Combinatorial Nullstellensatz,” Combinatorics, Probability and

Computing, 8, 7–29. A copy is available online on the University of California,

Davis webpage of Jesús A. De Loera (accessed 6/20/2022). Before stating the

Combinatorial Nullstellensatz, we need a preliminary result concerning zeros of a

polynomial over a field.

Proposition 14.23. Let f be a polynomial, not the zero polynomial, over a field

F in the variables x = (x1, x2, . . . , xn), of degree di in xi for 1 ≤ i ≤ n. Let Li be a

set of di + 1 elements of F for 1 ≤ i ≤ n. Then there exists t ∈ L1 × L2 × · · · × Ln

such that f(t) 6= 0.

Note. We now have the equipment to prove the Combinatorial Nullstellensatz.

Theorem 14.24. The Combinatorial Nullstellensatz.

Let f be a polynomial over a field F in the variables x = (x1, x2, . . . , xn). Suppose

that the total degree of f is
∑n

i=1 di and that the coefficient in f of
∏n

i=1 xdi

i is

nonzero. Let Li be a set of di + 1 elements of F for 1 ≤ i ≤ n. Then there exists

t ∈ L1 × L2 × · · · × Ln such that f(t) 6= 0.

https://www.math.ucdavis.edu/~deloera/MISC/LA-BIBLIO/trunk/Alon/nullstellensatz
https://www.math.ucdavis.edu/~deloera/MISC/LA-BIBLIO/trunk/Alon/nullstellensatz
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Note. By Note 14.6.A, the existence of t ∈ L1 × L2 × · · · × Ln such that f(t) 6= 0

where f is the adjacency polynomial A(G,x) implies a list colouring of G. So

Proposition 14.23 and the Combinatorial Nullstellensatz (Theorem 14.24) can ve

used to explore list colourings.

Corollary 14.25. If G has an odd number of orientations D with outdegree

sequence d, then G is (d + 1)-list-colourable.

Revised: 6/25/2022


