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Section 14.7. The Chromatic Polynomial

Note. In this section we introduce another polynomial (this time, one of a single

variable) associated with a graph. This polynomial gives the number of k-colourings

of G and is hence called the chromatic polynomial of G. We present a recursive

technique for the computation of chromatic polynomials. In this section we allow

loops and parallel edges, unless stated otherwise.

Note. George D. Birkhoff (March 21, 1884–November 12, 1944) studied the num-

ber of k-colourings of a graph when considering the Four-Colour Conjecture in

“A Determinant Formula for the Number of Ways of Coloring a Map,” Annals of

Mathematics, 14(1/4), 42–46 (1912/13). A copy is available online on the JSTOR

website (no password is required; accessed 6/22/2022). We denote the number of

distinct k-colourings c : V → {1, 2, . . . , k} of a graph G by C(G, k). So C(G, k) > 0

if and only if G is k-colourable, and if G has a loop then C(G, k) = 0. To count

k-colourings, we need a way to distinguish between different colourings. An exam-

ple of the computation of the number of colourings of an elementary map is given

in the supplement Supplement. The Four-Color Theorem: A History, Part 2; see

Note FCT.R.

Definition. Two colourings of graph G are distinct if some vertex is assigned dif-

ferent colours in the two colourings. That is, if {V1, V2, . . . , Vk} and {V ′
1 , V

′
2 , . . . , V

′
k}

are two k-colourings (where the Vi and V ′
i are colour classes) then the k-colourings

are equal, {V1, v2, . . . , Vk} = {V ′
1 , V

′
2 , . . . , V

′
k}, if and only if Vi = V ′

i for 1 ≤ i ≤ k.

https://www.jstor.org/stable/1967597?seq=1
https://www.jstor.org/stable/1967597?seq=1
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Supplement-Four-Color-Theorem2.pdf
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Note. Consider a triangle on vertices v1, v2, v3. There are six distinct 3-colourings:

(1) V1 = {v1}, V2 = {v2}, V3 = {v3}, (2) V1 = {v1}, V2 = {v3}, V3 = {v2}, (3)

V1 = {v2}, V2 = {v1}, V3 = {v3}, (4) V1 = {v2}, V2 = {v3}, V3 = {v1}, (5)

V1 = {v3}, V2 = {v1}, V3 = {v2}, and (6) V1 = {v3}, V2 = {v2}, V3 = {v1}. So

C(K3, 3) = 6. Similarly, there are n! n-colourings of Kn. Of course these colour-

ings are “structurally” very similar and we could define some type of isomorphism

or equivalence classes of k-colourings, but instead we follow our definition of “dis-

tinct” in the counting process and the value of C(G, k).

Note 14.7.A. If G has n vertices and no edges, then each vertex can be assigned

any of the k colours so that C(G, k) = kn. In a k-colouring of G = Kn (where

k ≥ n), the first vertex v can be assigned any of the k colours, the second vertex v2

can be assigned any of the remaining k−1 colours, and so forth so that G(Kn, k) =

C(G, k) = k(k − 1) · · · (k − n + 1) (the number of permutations of k objects taken

n at a time). We are using the Fundamental Counting Principle here, and we

will also require it in the exercises; see my online notes for Applied Combinatorics

and Problem Solving (MATH 3340) on Section 1.1. The Fundamental Counting

Principle.

Note. In Exercise 14.7.1 it is to be shown that the C(G, k) satisfies the recursion

formula:

C(G, k) = C(G \ e, k)− C(G/e, k). (14.5)

https://faculty.etsu.edu/gardnerr/3340-Applied-Combinatorics/notes-Combinatorics/Merris-1-1.pdf
https://faculty.etsu.edu/gardnerr/3340-Applied-Combinatorics/notes-Combinatorics/Merris-1-1.pdf
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Note. Notice that the recursion formula (14.5) is similar in structure to the formula

for the number of spanning trees t(G) of G as given in Proposition 4.9: t(g) =

t(G \ e) + t(G/e). Recursion formula (14.5) yields the following recursion formula

for the chromatic polynomial. In the following, it is claimed that the coefficients

“alternate in sign,” which means that the coefficients alternate as nonpositive,

nonnegative, nonpositive, nonnegative, etc. That is, we interpret “alternate in

sign’ be allowing 0 to be considered as either positive or negative, as needed.

Theorem 14.26. For any loopless graph G, there exists a polynomial P (G, x) such

that P (G, x) = C(G, k) for all nonnegative integers k. Moreover, if G is simple and

e is any edge of G, then P (G, x) satisfies the recursion formula:

C(G, x) = C(G \ e, x)− C(G/e, x). (14.6)

The polynomial P (G, x) is of degree n, with integer coefficients which alternate in

sign, leading term xn, and constant term 0.

Definition. The polynomial P (G, x) of Theorem 14.26 which gives the number of

k-colourings of loopless graph G is the chromatic polynomial of G.

Note. Recursion formula (14.6) gives us two ways to find P (G, x):

(i) We can start with graph G and repeatedly delete and contract edges and use

the formula P (G, x) = P (G \ x)− P (G/e, x) to express P (G, x) as an integer

linear combination of chromatic polynomials of empty graphs.
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(ii) We can start with a complete graph and repeatedly delete and contract edges

(a complete graph in which an edge is contracted yields a complete graph on

one fewer vertices, but with multiple edges, but multiple edges do not affect the

number of k-colourings) and use the formula P (G\e, x) = P (G, x)+P (G/e, x)

to express P (G, x) as an integer linear combination of chromatic polynomials

of complete graphs.

By Note 14.7.A, we know C(G, k) (and hence P (G, x)) for empty graphs and com-

plete graphs. The first method is best for finding chromatic polynomials for graphs

with few edges, whereas the second method is best for finding chromatic polyno-

mials for graphs with “many” edges (that is, graphs that are “close to” complete

graphs). Both techniques are to be used in Exercise 14.7.2.

Note. In Section 14.1. Chromatic Number, in order to motivate the Greedy

Colouring Heuristic, we observed that finding the chromatic number of a graph

is NP-hard. If a polynomial-time algorithm were known for finding the chromatic

polynomial of a graph, then this could be used to find the chromatic number of a

graph (also in polynomial-time). So no such algorithm is known. Hence, finding

the chromatic polynomial for a given graph often involves expressing it in terms

of chromatic polynomials of subgraphs. This is illustrated in some of the exercises

(see Exercises 14.7.6(a), 14.7.7, and 14.7.8).

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-14-1.pdf
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Note. The question of which polynomials are chromatic polynomials remains

unanswered. In Exercise 14.7.3(b) it is to be shown that x4 − 3x3 + 3x2 is not a

chromatic polynomial (but notice that it does satisfy the properties of a chromatic

polynomial as given in Theorem 14.26).

Definition. Roots of a chromatic polynomial are called chromatic roots.

Note 14.7.B. Using recurrence relation (14.6) one can show that 0 is the only real

chromatic root less than 1, as is to be done in Exercise 14.7.9. Thinking in terms

of the number of k-colourings of a graph, we see that 0 is a root of every chromatic

root for nonempty (that is, graphs with at least one edge), loopless graphs since

such graphs do not have 1-colourings.

Note. In the study of roots of polynomials one should, in the humble opinion of

your instructor, do so in the context of complex roots (in this way, we have the

power of the Fundamental Theorem of Algebra with us). Alan D. Sokal proved

in “Chromatic Roots are Dense in the Whole Complex Plane,” Combinatorics,

Probability and Computing, 13, 221–261 (2004) that, as the title states, the set of

chromatic roots of (all) chromatic polynomials form a dense subset of C. Recall

that one set is dense in another (in some topological space) if the closure of the

dense set equals the other set. So what Sokal has shown is that for any complex

number z0, for all ε > 0 there is a chromatic root in {z ∈ C | |z − z0| < ε}.

This is Sokal’s Corollary 1.3; the paper can be viewed online on the University

https://discovery.ucl.ac.uk/id/eprint/9064/1/9064.pdf
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College London website (accessed 6/24/2022). This might be surprising in light of

the fact that the only real chromatic root less than 1 is 0 (see Note 14.7.B). This

simply means that there are complex numbers which are chromatic roots which

are arbitrarily close to all real numbers less than 1 (or arbitrarily close to any real

number. . . or for that matter, arbitrarily close to any complex number!).

https://discovery.ucl.ac.uk/id/eprint/9064/1/9064.pdf
https://discovery.ucl.ac.uk/id/eprint/9064/1/9064.pdf
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Note. As a passing observation, we note that Alan Sokal is mentioned in my online

presentation Introduction to Math Philosophy and Meaning (originally prepared

for the Department of Biological Sciences class “Great Ideas in Science 1” [BIOL

3018]). In the 1990s he became a critic of “radical postmodernism” (my term). He

published an intentionally nonsensical paper in a well-respected cultural studies

journal which involved applications of quantum gravity to social settings and a

claim that there is no physically real world but that it is merely a social and

linguistic construct. He tells his story in his book with Jean Bricmont, Fashionable

Nonsense: Postmodern Intellectual’s Abuse of Science, Picador (1999).

Revised: 1/9/2023

https://faculty.etsu.edu/gardnerr/GIS/math-meaning.pdf

