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Chapter 15. Colourings of Maps

Note. In this chapter we outline Appel, Hakens, and Kock’s proof of the Four

Colour Theorem (and also explore Kempes’ incorrect proof of the 1880s). We

consider list colourings of planar graphs and extend the idea of map colourings to

surfaces other than the plane and sphere.

Section 15.1. Chromatic Numbers of Surfaces

Note. In this section, we define the chromatic number of a closed surface Σ,

denoted χ(Σ), and put upper bounds on this number for some surfaces. We show

by example that this upper bound is attained for a torus. The basic idea of this

section is the extend the Four Colour Theorem from the plane to other surfaces.

Note. The Four Colour Theorem (Theorem 11.2) implies that every planar graph

has chromatic number at most four. In Theorem 10.4 we claimed that a graph is

planar (or “embeddable in the plane”) if and only if it is embeddable in the sphere

(this idea is justified based on stereographic projection between the extended plane

and the sphere). Hence, every graph embeddable in the sphere has chromatic

number at most four. We make the transition from the plane to the sphere in

order to have a conversation about surfaces. Recall from Section 10.6. Surface

Embeddings of Graphs that a surface (or “2-manifold”) is closed if it is bounded

and has no boundary.

Theorem 15.1.A. For every closed surface Σ, there is a least integer k such that

every graph embeddable on Σ has chromatic number at most k.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-6.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-6.pdf
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Definition. For a closed surface Σ, the least integer k such that every graph

embeddable on Σ is k-colourable is the chromatic number of Σ, denoted χ(Σ).

Note. Notice that Theorem 15.1.A does not give χ(Σ), but only gives an upper

bound on χ(Σ). Figure 15.1 lists four closed surfaces, their Euler number c(Σ),

and upper bounds on their chromatic number χ(Σ).

Note. We can refine the bound on χ(Σ) given in the proof of Theorem 15.1.A

when c(Σ) < 0 with the following bound given by Percy J. Heawood in “Map-

Colour Theorem,” Quarterly Journal of Pure and Applied Mathematics, 24, 332–

338 (1890). This is partially reprinted in N. L. Biggs, E. K. Lloyd, R. J. Wilson’s

Graph Theory: 1736-1936, (NY: Clarendon Press/Oxford, 1976); see pages 105–

107. It was in this paper that Heawood pointed out an error in Altred Kempe’s

(then 10-year-old) “proof” of the Four Colour Theorem (to be discussed in the next

section).
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Theorem 15.1. Heawood’s Inequality.

For any closed surface Σ with Euler characteristic c ≤ 0 we have

χ(Σ) ≤ 1

2

(
7 +

√
49− 24c

)
.

Note 15.1.A. Since we only have upper bounds on χ(Σ), we can get equality if we

can find a specific graph with chromatic number equal to an upper bound on χ(Σ).

For the torus, chromatic number is at most 7, as stated in Figure 15.1. Of course

χ(K7) = 7 and an embedding of K7 on the torus (originally due to Heawood) is

given in Figure 3.9(a), so 7 is the chromatic number of the torus.

In the other direction, we can show that the upper bound of χ(Σ) is not in fact

the least upper bound by example. From Figure 15.1 we see that for Σ as the

Klein bottle we have χ(Σ) ≤ 7. Phillip Franklin showed in “A Six-Colour Prob-

lem,” Journal of Physics, 13, 363–369 (1934), that K6 can be embedded in the

Klein bottle (and of course it is 6-colourable). It’s dual (called the Franklin graph)

partitions the Klein bottle into 6 regions (one for each vertex), giving a map on
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the Klein bottle that is 6-face colourable. In Figure 15.2, the faces of the map are

given in (b) and the dual of it, the 6-colourable graph on 6 vertices, is given in (a).

The Franklin graph is given in Figure 15.3 with three crossings (which coincide in

this drawing).

Note. Heawood conjectured that equality holds in Theorem 15.1 for every surface

Σ of Euler characteristic χ(Σ) ≤ 0. This became known as the Heawood Map-

Colouring Conjecture. However, as argued in Note 15.1.A, the torus has chromatic

number at most 6, whereas Theorem 15.1 implies that the chromatic number is at

most 7 (because the Euler characteristic of the torus is 0). It turns out that this
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is the only exception to Heawood’s conjecture. It was shown in Gerhard Ringel

and J.W.T Youngs’ “Solution of the Heawood Map-Colouring Problem,” Proceed-

ings of the National Academy of Sciences, U.S.A, 60, 438–445 (1968) (available

online on the Proceedings of the National Academy of Sciences webpage; accessed

7/18/2022) that Heawood’s Map-Coluring Conjecture holds for all surfaces of Euler

characteristic at most 0, with the exception of the torus. This result is now known

as the Map Colour Theorem.

Note. As for surfaces of positive characteristic, there are only the projective plane

(of characteristic 1) and the plane or sphere (of characteristic 2). The Four Colour

Theorem shows that the chromatic number of the sphere is 4 (which, in fact, also

agrees with the bound given by Theorem 15.1, even though it is only necessarily true

for surfaces of nonpositive characteristic). We have a bound of 6 on the chromatic

number of the projective plane, as given in Figure 15.1. In Figure 25(a) we have

an embedding of K6 on the projective plane, establishing 6 as the chromatic value

of the projective plane (interestingly, this also agrees with the bound given by

Theorem 15.1 if we were to plug c = 1 into the bound).

https://www.pnas.org/doi/pdf/10.1073/pnas.60.2.438
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We have only considered closed surfaces, but the ideas of this section can be ex-

tended to surfaces with boundaries. In Exercise 15.1.1 it is to be shown by example

that the chromatic number of the Möbius strip is at least six.

Revised: 8/26/2022


