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Section 15.2. The Four-Colour Theorem

Note. We stated the Four-Colour Theorem in Section 11.1 as:

Theorem 11.2. The Four-Colour Theorem.

Every plane graph without cut edges is 4-face colourable.

A proof was given by Kenneth Appel, Wolfgang Haken, and John Koch in 1977.

Some history and concern of this proof is given in Section 11.1. Colourings of Planar

Maps. In this section, we outline some of the techniques used in the 1977 proof.

We also discuss the error made by Alfred Kempe in his 1879 paper.

Note 15.2.A. Appel, Haken, and Koch’s proof is by contradiction. Assuming the

Four-Colour Theorem is false, there is a smallest (loopless) plane graph which is

not 4-colourable. In this section, we denote such a smallest graph as G so that:

(i) G is not 4-colourable, and

(ii) subject to (i), v(G) + e(G) is as small as possible.

Proposition 15.2. Let G be a smallest counterexample to the Four-Colour The-

orem. Then

(i) G is 5-critical,

(ii) G is a triangulation, and

(iii) G has no vertex of degree less than four.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-11-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-11-1.pdf
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Note 15.2.B. In Corollary 10.22 we saw that a simple planar graph has some vertex

of degree at most five. If it could be shown that our smallest counterexample G has

no such vertex, then we would have a contradiction and the Four-Colour Theorem

would be proved. Alfred B. Kempe in his “On the Geographical Problem of the

Four Colours,” American Journal of Mathematics, 2, 193-200 (1879), reprinted in

N. L. Biggs, E. K. Lloyd, and R. J. Wilson’s Graph Theory: 1736–1936, Oxford

University Press (1976), took a step in that direction by extending Proposition

15.2(iii) to show that G has no vertex of degree four.

Theorem 15.3. A smallest counterexample G to the Four-Colour Theorem has

no vertex of degree four.

Definition. The paths Pij consisting of vertices of only colours i and j as given

in the proof of Theorem 15.3 are Kempe chains. The procedure of switching two

colours on a Kempe chain is called a Kempe interchange.

Note. Kempe chains and Kempe interchange are used to prove the next theorem

and its corollary (in Exercise 15.2.1).

Theorem 15.4. A smallest counterexample G to the Four-Colour Theorem con-

tains no separating 4-cycle.
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Corollary 15.5. G is 5-connected.

Note. By Corollary 10.22 and Theorem 15.3, smallest counterexample G has a

vertex of degree five. Its neighbors induce a 5-cycle (since G is a triangulation by

Proposition 15.2(ii)). This cycle is a separating 5-cycle since its removal from G

results in separating the degree five vertex from those outside the 5-cycle.

Note. George Birkhoff in “The Reducibility of Maps,” American Journal of Math-

ematics, 35, 115–128 (1913) (available online from JSTOR; accessed 7/22/2022)

proved that every separating 5-cycle in a smallest counterexample to the Four-

Colour Theorem is induced by the neighbors of a degree five vertex (we accept

this without proof). This result, combined with Proposition 15.2(ii) and Corollary

15.5 gives the next theorem. But first, we give a name to the property Birkhoff

considered.

Definition. A 5-connected graph with the property that every separating 5-cycle

is induced by the neighbors of a degree five vertex is essentially 6-connected.

Theorem 15.6. A smallest counterexample G to the Four-Colour Theorem is an

essentially 6-connected triangulation.

https://www.jstor.org/stable/2370276#metadata_info_tab_contents
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Note. We now consider Kempe’s erroneous proof of the Four-Colour Theorem.

This appeared in his 1879 paper mentioned above. In Robin Wilson’s popular-level

book Four Colors Suffice: How the Map Problem was Solved (Princeton University

Press, 2002), it is stated that Kempe’s mistake is “the most fallacious proof in

the whole of mathematics” (see Wilson’s Chapter 5). Kempe claimed to have

proved that a smallest counterexample cannot contain a vertex of degree five, in

contradiction to Corollary 10.22 as mentioned above in Note 15.2.B. Similar to

the proof of that G has no vertex of degree four (Theorem 15.3), we assume that

v is a vertex of degree five with N(v) = {v1, v2, v3, v4, v5}. Since G is a smallest

counterexample then G− v has a 4-colouring (V1, V2, V3, V4). The plan is to modify

this colouring in such a way as to assign at most three colours to the neighbors of

v. In this way the fourth colour can be assigned to v yielding a 4-colouring of G

and a contradiction.

Note. Consider a 4-colouring of G − v. As in the proof of Theorem 15.3, v is

adjacent to a vertex of each of the four colours (or else we could assign the fourth

colour to v, giving a 4-colouring of G). Without loss of generality, say vi ∈ Vi for

1 ≤ i ≤ 4, and v5 ∈ V2, as in Figure 15.6.
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Denote by Gij the subgraph of G induced by the set of vertices Vi ∪ Vj (so every

vertex of Gij is either colour i or colour j). We may assume that v1 and v3 belong

to the same connected component of G13, otherwise the colours 1 and 3 on the

connected component of G13 containing v1 can be interchanged to give a 4-colouring

of G−v where v1 has colour 3 and so only three colours are assigned to the neighbors

of v, implying a 4-colouring of G and a contradiction (see the figure below).

Similarly, we may assume that v1 and v4 belong to the same connected component

of G14. Let P13 be a v1v3-path in G13 and let P14 be a v1v4-path in G14. The

cycle vv1P13v3v separates vertices v2 and v4 (in Figure 15.6, v2 ∈ int(vv1P13v3v)

and v4 ∈ ext(vv1P13v3v)), and the cycle vv1P14v4v separates vertices v3 and v5 (in

Figure 15.6, v5 ∈ int(vv1P14v4v) and v3 ∈ ext(vv1P14v4v)).

Note. Kempe next argued that the colours 2 and 4 in the component of G24

containing v2 could be interchanged, thus assigning colour 4 to v2 (since v2 and v4

are separated by a cycle, as explained in the previous note, this does not affect the

colour of v4). Similarly, the colours 2 and 3 in the component of G23 containing v5

(v5 is originally colour 2) could be interchanged, thus assigning colour 3 to v5 (since

v3 and v5 are separated by a cycle, this does not affect the colour of v4). These
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are the Kempe interchanges. In this way, vertices v1, v2, v3, v4, v5 are assigned the

colours 1, 3, 4. Then colour 2 can be assigned to vertex v, giving a 4-colouring of

G and the desired contradiction. See the figure below.

As in the proof of Theorem 15.3, one colour interchange causes no problems. But

the second colour interchange can “conflict” with the first so that the final vertex

colouring is not proper (this can occur when paths P13 and P14 intersect at internal

vertices). This is where the error is. In Exercise 15.2.2, the technique is applied

to the following partial colouring of a plane triangulation and results in a vertex

colouring that is not proper (notice that P13 and P14 intersect at the uppermost

vertex):
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Note. Kempe’s error went undetected for about 10 years. Percy J. Heawood

in “Map-Colour Theorem,” Quarterly Journal of Pure and Applied Mathematics,

24, 332–338 (1890) (this is partially reprinted in N. L. Biggs, E. K. Lloyd, and

R. J. Wilson’s Graph Theory: 1736–1936, Oxford University Press, 1976) called

attention to the fact that the two Kempe interchanges may not result in a proper

4-colouring of G − v. Heawood pointed out that the technique could be used to

prove the Five-Colour Theorem (with just one Kempe interchange), as we did in

the proof of Theorem 11.6.

Note. Some of Kempe’s ideas were ultimately employed in the 1970s proof of the

Four-Colour Theorem. He introduced the ideas of reducibility and unavoidability.

We now define these ideas (along with that of a configuration) and illustrate them.

Definition. Let C be a cycle in a simple plane triangulation G. If C has no inner

chords and has exactly one inner bridge B, then B ∪ C is a configuration of G.

The cycle C is the bounding cycle of the configuration of G and B is its bridge. A

configuration (in general) is a configuration of some simple plane triangulation.

Note. Recall from Exercise 2.2.19 that a chord of a cycle is an edge of a graph not

in the cycle which has both of its ends in the cycle. Figure 10.15 of Section 10.4.

Bridges illustrates several bridges of a cycle. The wheel Wk with k spokes (k ≥ 2)

is a configuration; the bridge is the center vertex and the spokes (so it’s the star

Sk) and the vertices of attachment of this bridge make up the set of vertices of the

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-4.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-4.pdf
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cycle. The Birkhoff diamond of Figure 15.7 below is also a configuration, bounded

by a 6-cycle.

Definition. A configuration is reducible if it cannot be a configuration of a smallest

counterexample to the Four-Colour Conjecture.

Note. Combining Proposition 15.2(iii) and Theorem 15.3, we see that a smallest

counterexample to the Four-Colour Theorem G cannot have a vertex of degree four

or less. So configurations W2, W3, and W4 are reducible (because the center of Wk

is degree k in G, the vertices on the cycle may have higher degree than 4 in G).

Theorem 15.6 implies that every separation 5-cycle of G is induced by a degree five

vertex. So a separating 5-cycle that is not induced by the neighbors of a degree

five vertex, such as the following, is reducible.

Notice that this leaves open as to whether W5 is a reducible configuration or not.

“Kempe’s failed proof was an attempt to show that W5, also, is reducible”

(Bondy and Murty, page 405). The “Birkhoff diamond” of Figure 15.7 is a reducible

configuration as we show in the next theorem. Notice that the 6-cycle on vertices

vi, 1 ≤ i ≤ 6, has no chord and has a bridge with four internal vertices and vertices
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of attachment of vi for 1 ≤ i ≤ 6.

Theorem 15.7. The Birkhoff diamond is reducible.

Definition. A set U of configuration is unavoidable if every essentially 6-connected

triangulation necessarily contains at least one member of U .

Note. Since (by definition) an essentially 6-connected graph is 5-connected and

every separating 5-cycle is induced by the neighbors of a degree five vertex, then

the set {W5} is an unavoidable set. By the definition of reducible configuration, a

smallest counterexample to the Four-Colour Theorem cannot contain a reducible

configuration. Since a smallest counterexample is essentially 6-connected by The-

orem 15.6 and is a triangulation by Theorem 15.2(ii), then such a counterexample

must contain at least one configuration from each unavoidable set. HERE’S THE

PUNCHLINE: To prove that no counterexample exists, it suffices to find an un-

avoidable set of configurations, each of which is reducible! We would then have

a counterexample that must contain a reducible configuration (which, of course,

it cannot contain). This contradiction proves that no counterexample can exist,
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and hence the Four-Colour Theorem holds. The unavoidable set of configurations

given by K. Appel and W. Haken in “Every Planar Map is Four Colorable. I.

Discharging,” Illinois Journal of Mathematics, 21, 429–490 (1977) (available on-

line on the Project Euclid webpage; accessed 7/25/2022), had 1482 members. N.

Robertson, D. Sanders, P. Seymour, and R. Thomas, “The Four-Colour Theorem,”

Journal of Combinatorial Theory, series B, 70, 166–183 (1997) (available online

on ScienceDirect.com; accessed 12/31/2022), using a technique more refined than

that of Appel and Haken, constructed an unavoidable set with only 633 members.

Note. Finding unavoidable sets is addressed by the process of “discharging.” Each

vertex is assigned a “charge,” and this charge is redistributed by a “discharging

algorithm” that defines a set U of configurations such that any triangulation which

contains no member of U is discharged by the algorithm.

Definition. Given a graph G, for each vertex v ∈ V (G) the weight 6 − d(v) is

assigned to v is the charge of v (the charge need not be an integer). To discharge

a vertex of graph G is to attempt to redistribute the charge in some “methodical

way” (that is, discharging algorithm) that makes the charge at the vertex negative

or zero.

Note. We will not explore the details on how we know that the discharging algo-

rithm produces configurations that are unavoidable by triangulations. Instead we

illustrate by example how a discharging algorithm modifies charges and discharges

vertices.

https://projecteuclid.org/download/pdf_1/euclid.ijm/1256049011
https://www.sciencedirect.com/journal/journal-of-combinatorial-theory-series-b/vol/70/issue/1
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Note. No discharging algorithm can completely discharge the vertices of a trian-

gulation because the sum of charges (which remains the same in the algorithm; it

“conserves” total charge) is always positive:

total charge =
∑
v∈V

(6− d(v)) = 6v(G)−
∑
v∈V

d(v)

= 6v(G)− 2e(G) = 6n− 2m

= 6n− 2(2n− 6) since m = 3n− 6 for a triangulation by

Corollary 10.21; this follows from Euler’s Formula (Thm. 10.19)

= 12.

So any triangulation must contain at least one member of U ; that is, U is an un-

avoidable set of configurations. We arrive at this conclusion by ASSUMING a tri-

angulation contains no members of U and use a discharging algorithm to discharge

all vertices, which is a CONTRADICTION (since then the sum of the charges

is nonpositive, but we know that it is in fact 12). Hence the triangulation must

contain members of the unavoidable set U .

Note. In the next note, we give an example of a discharging algorithm. A more

detailed explanation of the same algorithm is given in my supplement to this sec-

tion, Supplement. The Four-Color Theorem: A History, Part 2 (see Note FCT.N).

This supplement gives a more detailed and visual explanation of what is presented

next, and it is recommended that read the supplement before reading what follows.

Beware, though, that the supplement considers the map itself and the regions are

charged, as opposed to the presentation here where the charge is on the vertices

(because we are considering the dual of the map itself).

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Supplement-Four-Color-Theorem2.pdf
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Note. As an example, consider a discharging algorithm that takes the charge of

each vertex of degree five and distributes its charge of one equally amongst its

five neighbors. A vertex v of degree eight or more is discharged by this algorithm

because the maximum charge that a vertex can receive from its neighbors is 1
5d(v)

(in the case that each neighbor of v is of degree five), so for d(v) ≥ 8 we have the

new charge of v is at most

(6− d(v)) +
1

5
d(v) = 6− 4

5
d(v) ≤ 6− 4

5
(8) = −2/5 < 0.

A vertex v of degree seven with no more than five neighbors of degree five is

discharged because the new charge of v is at most (6− d(v))+ 1
5(5) = (−1)+ (1) =

0. If v is a vertex of degree five with no neighbor of degree five then the new

charge is (6 − d(v)) = (6 − d(v) = (1) − (1) = 0 and such a vertex is discharged.

A vertex v of degree six with no neighbors of degree five has a charge of 6 −

d(v) = 6 − 6 = 0 which remains unchanged, and such a vertex is discharged. So

a triangulation consisting only of vertices satisfying these conditions is discharged

by this algorithm. That is, all vertices have a new charge that is either negative

or zero. But we know by the previous note that the total charge is 12 and that

the discharging algorithm preserves charge, so having all vertices with nonpositive

charge leads to a contradiction. In an essentially 6-connected triangulation, we

consider the set U of configurations with:

(1) a vertex of degree five that is adjacent to a vertex of degree five,

(2) a vertex of degree five that is adjacent to a vertex of degree six, and

(3) a vertex of degree seven with at least five neighbors of degree five.
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However, in (3) the vertex of degree seven must have two consecutive neighbors of

degree five and these are adjacent in G. Therefore case (3) is included in case (1).

So the set U of unavoidable configurations for this discharging algorithm includes

the following two configurations (1) and (2), which we represent as:

Here we have used the “Heesch representation” of the configuration in which the

numbers indicate degrees.

Note. The discharging technique has been applied to other colouring problems of

planar graphs and graphs embeddable on other surfaces. R. Steinburn conjectured

that every planar graph without cycles of length four or five is 3-colourable. H.L.

Abbott and B. Zhou in “On Small Faces in 4-Critical Planar Graphs,” Ars Combi-

natoria, 32, 203–207 (1991) proved a weaker version of Steinburg’s Conjecture by

considering graphs with no cycles of length k for all 4 ≤ k ≤ 11.

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of length

k for 4 ≤ k ≤ 11.

Note. O.V. Borodin, A.N. Glebov, A. Respaud, and M.R. Salavatipour in “Planar

Graphs without Cycles of Length 4 to 7 are 3-Colourable,” Journal of Combinato-

rial Theory, Series B, 93, 303–311 (2005) (available on the ScienceDirect webpage,

accessed 7/27/2022) proved that Theorem 15.2.A could be refined by requiring

https://www.sciencedirect.com/science/article/pii/S0095895604001170
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4 ≤ k ≤ 7. They also used discharging but with more complicated discharging

algorithms. Y. Zhao in “3-Coloring Graphs Embedded in Surfaces,” Journal of

Graph Theory, 33, 140–143 (2000) (some details, and possible access, are online

on the Journal of Graph Theory webpage, accessed 7/27/2022) extended Theorem

15.2.A to closed surface Σ by proving there exists some constant f(Σ) (dependent

only on surface Σ) such that any graph embeddable on Σ and containing no k-cycles

for 4 ≤ k ≤ f(Σ), is 3-colourable.

Note. In the two 1977 papers of Appel, Hakin, and Koch presenting a proof of

the Four-Colour Theorem, 487 discharging rules were used which resulted in over

1400 unavoidable configurations; a computer search generated the 1400-odd con-

figurations. N. Robertson, D. Sanders, P. Seymour, and R. Thomas in “The Four-

Colour Theorem,” Journal of Combinatorial Theory, Series B, 70, 2–44 (1997)

using “only” 32 discharging rules to find 633 unavoidable configurations (again,

with computer assistance; available online on the Science Direct website, accessed

1/11/2023).

Note. The Appel, Hakin, and Koch 1977 proof drew quick criticism. Since key

parts of the proof were dependent on a computer search that could not be checked

by hand, the proof itself could not be checked. In the first of the two 1977, K. Appel

and W. Haken, “Every Planar Map is Four Colorable. I. Discharging,” Illinois Jour-

nal of Mathematics, 21, 429-490 (1977), the discharging methods for constructing

the unavoidable sets are described. In the second paper, K. Appel, W. Haken, and

https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0118%28200003%2933%3A3%3C140%3A%3AAID-JGT3%3E3.0.CO%3B2-3
https://www.sciencedirect.com/science/article/pii/S0095895697917500
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J. Koch, “Every Planar Map is Four Colorable. Part II. Reducibility,” Illinois Jour-

nal of Mathematics, 21, 491-567 (1977), the computer program is described and the

entire unavoidable set of reducible configurations are listed. The two papers were

supplemented by a microfiche of 450 additional pages of additional diagrams and

explanations. The controversy receded some with the publication of Appel and

Haken’s Every Planar Map is Four Colorable, Contemporary Mathematics #98,

741 pp., American Mathematical Society (1989). This work is described on the

AMS Bookstore webpage as:

“. . . the book contains the full text of the supplements and checklists,

which originally appeared on microfiche. The thirty-page introduction,

intended for nonspecialists, provides some historical background of the

theorem and details of the authors’ proof. In addition, the authors

have added an appendix which treats in much greater detail the ar-

gument for situations in which reducible configurations are immersed

rather than embedded in triangulations. This result leads to a proof

that four coloring can be accomplished in polynomial time.” (Accessed

9/4/2022.)

The relatively simple 1997 JCT-B paper of N. Robertson, D. Sanders, P. Seymour,

and R. Thomas also calmed things. In 2008 (the same as the publication of Bondy

and Murty’s graduate text book), George Gonthier published “Formal Proof—

The Four Color Theorem,” Notices of the American Mathematical Society, 55(1),

1382–1393 (accessed 9/4/2022). In this work, Gonthier (and colleague Benjamin

Werner) formalized a proof in the “COQ” (for “Calculus of Constructions,” with a

little French to change the second C into a Q) scheme. The Wikipedia COQ page

(accessed 9/4/2022) describes COQ as:

https://bookstore.ams.org/conm-98
https://www.sanitas.es/media/sanp/documento/ver-las-tarifas-2019/georges-gonthier.pdf
https://www.sanitas.es/media/sanp/documento/ver-las-tarifas-2019/georges-gonthier.pdf
https://en.wikipedia.org/wiki/Coq
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“Coq is an interactive theorem prover first released in 1989. It allows for

expressing mathematical assertions, mechanically checks proofs of these

assertions, helps find formal proofs, and extracts a certified program

from the constructive proof of its formal specification. Coq works with-

in the theory of the calculus of inductive constructions, a derivative

of the calculus of constructions. Coq is not an automated theorem

prover but includes automatic theorem proving tactics (procedures)

and various decision procedures.”

Gonthier’s paper removes the need to trust the computer program, but it shifts

this over to a requirement to trust the COQ scheme.

Note. The complaints that computer techniques have intruded into pure mathe-

matics proofs still persist. One resolution for the Four Color Theorem would be to

introduce a non-computer-based proof. But this would require new ideas and, over

the past 45 to 50 years since Appel and Haken’s initial success, there seems to be

no progress in this direction. The mathematics writer Ian Stewart is paraphrased

in Wilson’s Four Colors Suffice (2002) as complaining that the Appel-Haken proof

“did not explain why the theorem is true—partly because it was too long for anyone

to grasp all the details, and partly because it seemed to have no structure” (see

page 220). The purpose of a mathematical proof is not so much to learn what is

true about mathematical structures, but why the mathematical structures have the

proven properties.
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