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Section 16.4. Perfect Matchings and Factors

Note. In Section 16.2. Matchings in Bipartite Graphs we saw necessary and suf-

ficient conditions for the existence of a perfect matching of bipartite graphs (in

Hall’s Theorem [Theorem 16.4] and Corollary 16.5). In this section we give a nec-

essary and sufficient condition for the existence of a perfect matching that applies

to general graphs (in Tutte’s Theorem, Theorem 16.13). The proofs require some of

the results of Section 16.3. Matchings in Arbitrary Graphs (in particular, the idea

of a barrier and the Tutte-Berge Theorem, Theorem 16.11), so this is necessary

background for the current section. We define a factor and give an algorithm that

reduces the problem of finding a general factor into finding a special type of factor

(a “1-factor”).

Theorem 16.13. Tutte’s Theorem.

A graph G has a perfect matching if and only if o(G− S) ≤ |S| for all S ⊆ V .

Note. Tutte’s Theorem (Theorem 16.13) does not gie a clear class of graph which

have perfect matchings, but instead gives a necessary and sufficient condition for

the existence of a perfect matching. Julius Petersen was concerned with a problem

about factoring polynomials into irreducible factors (he corresponded with David

Hlbert about this problem). He associated perfect matchings with factors of degree

one. For this reason, perfect matchings are also called 1-factors. Pertersen’s work

appears in “Die Theorie der Regulären Graphs,” Acta Mathematica, 15, 193–220

(1891). An English translation of the paper appears in Chapter 10, “The Factor-

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-16-2.pdf
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ization of Graphs,” of N. L. Biggs, E. K. Lloyd, and R. J. Wilson’s Graph Theory:

1736-1936, Oxford University Press (1976) (this source was mentioned in in Sec-

tion 1.7. Further Reading). Petersen focused on degree three polynomials, which

correspond to 3-regular graphs, resulting in the next theorem. As a quick historical

note, Bondy and Murty state that Petersen’s interest in k–degree polynomials and

there association with k-regular graphs is how the term “degree” migrated from

polynomials to its use in graph theory as the “degree of a vertex.”

Theorem 16.14. Petersen’s Theorem.

Every 3-regular graph without cut edges has a perfect matching.

Note. The condition that G has no cut edges in Petersen’s Theorem (Theorem

16.14), as shown by the fact that the 3-regular Sylvester graph has no perfect

matching (as argued in Note 16.3.A).

Definition. Let G be a graph and let f be a nonnegative integer-valued function

on V . An f -factor of G is a spanning subgraph F of G such that dF (v) = f(v) for

all v ∈ V . A k-factor of G is an f -factor with dF (v) = f(v) = k for all v ∈ V .

Note. A 1-factor of G is a spanning subgraph of G in which each vertex is degree

1. Hence a 1-factor is a perfect matching. A 2-factor is a spanning subgraph of G

in which each vertex is degree 2. Hence a 2-factor is a collection of disjoint cycles

which span the graph.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-1-7.pdf
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Note. Bondy and Murty state (on page 437): “Many interesting graph-theoretic

problems can be solved in polynomial time by reducing them to problems about

1-factors.” As an example, William Tutte showed that the question of deciding

whether a given graph has an f -factor can be reduced to deciding whether a related

graph G′ has a 1-factor. His result appears in “A Short Proof of the Factor Theorem

for Finite Graphs,” Canadian Journal of Mathematics, 6, 347–352 (1954). A copy

is online on the University of Michigan website (accessed 7/1/2022). His reduction

process is as follows.

Note 16.4.A. For G to have an f -factor, we must certainly have d(v) ≥ f(v) for

all v ∈ V . We assume G is loopless “for simplicity.” For each v of G, we replace

v by set Yv of d(v) vertices, each of degree one so that each edge incident to v is

then replaced by an edge incident to one of the Yv as follows:

Next we add a set Xv of d(v)− f(v) vertices and form a complete bipartite graph

Hv by joining each vertex of Xv to each vertex of Yv. For example, if we are looking

for a 2-factor so that f(v) = 2, then when d(v) = 4 we have:

https://web.eecs.umich.edu/~pettie/matching/Tutte-short-proof-of-factor-theorem.pdf
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The resulting graph H is obtained from graph G, more simply, by replacing each

vertex v of G by a complete bipartite graph Hv[Xv, Yv] and then joining each edge

incident to v to a different vertex of Yv. Figure 16.9 illustrates the construction in

the case of 2-factors where f(v) = 2 for all v ∈ V ; each dotted circle contains a

copy of Hv. Notice that the corner vertices are of degree 3 so that Hv = K3,1 in this

case. When the degree is 4, as in the center vertex, Hv = K4,2 (also as illustrated

above).

Notice that the dotted circles show how to recover G from H (by shrinking the

encircled bipartite graphs Hv to a single vertex v). In H, the vertices of Xv are

joined only to the vertices of Yv. This if F is a 1-factor of H, then all d(v) − g(v)

vertices of Xv are matched by F with d(v) − f(v) of the d(v) vertices of Yv. The

remaining f(v) vertices of Yv must be matched by F with f(x) vertices in V (H) \

V (Hv) (these edges of F are “between” vertices of Hv and vertices of Hw where w

is a neighbor of v in G). Next, shrinking H to G by collapsing the circles bipartite

graphs of H back down to vertices of H yields an f -factor of G (conversely, any

f -factor of G can be converted into a 1-factor of H, though this is not the direction

we are interested in). Figure 16.9 gives the steps (1) the creation from graph G of

graph H, (2) the introduction of a 1-factor (by observation), and (3) the shrinking

of H down to G and the resulting f -factor (a 2-factor in this example).
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Note. In Exercise 16.4.2 it is to be shown that the reduction of the f -factor problem

to the 1-factor problem is a polynomial time procedure. In the next section we’ll see

a polynomial time algorithm that finds a 1-factor of a graph (Edmond’s Algorithm).

Together, these give a polynomial time algorithm for finding a general f -factor of

a graph.

Note. In the pursuit of spanning subgraphs with degree parities, we introduce the

next definition.

Definition. Let G be a graph and let T be an even subset of V . A spanning

subgraph H of G is a T -join if dH(v) is odd for all v ∈ T and even for all v ∈ V \T .

Note. If H is a 1-factor of a graph then it is a V -join since each vertex of the

1-factor with vector set T is degree 1 and V \T = ∅ so vacuously all v ∈ V \T are

of even degree. If H = P is a spanning xy-path in G then for T = {x, y} we have

that P is a T -join (or {x, y}-join) of G since each vertex of the path other than x

and y is of degree two and each vertex of T = {x, y} is of degree one in the path.

Note. In the setting of weighted graphs, we now state two problems. One is related

directly to a T -join and the other is related to perfect matchings.
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Problem 16.15. The Weighted T -Join Problem.

GIVEN: A weighted graph G = (G, w) and a subset T of V .

FIND: A minimum-weight T -join of G (if one exists).

Note. The Shortest Path Problem (Problem 6.11) can be viewed as a special

case of the Weighted T -Join Problem. We would start with graph G and vertices

x and y. Then we would consider a minimum-weight {x, y}-join of G with the

restriction that we replace G with the graph spanned by the edges of the path

(so that the path is a spanning subgraph, as needed). Another special case is the

Postman Problem of Exercise 16.4.22: “In [their] job, a postman picks up mail at

the post office, delivers it, and then returns to the post office. [They] must, of

course, cover each street at least once. Subject to this condition, [they wish] to

choose a route entailing as little walking as [is] possible.” This relates to finding

a minimum-weight Eulerian spanning digraph. Notice that priority here is on the

edges (i.e., the “streets”) whereas in the Traveling Salesman Problem (Problem

2.6) the priority is on the vertices (i.e., the “cities”).

Note. It is to be shown in Exercise 16.4.21 that the Weighted T -Join Problem can

be reduced in polynomial-time to the following problem.

Problem 16.16. The Minimum-Weight Matching Problem.

GIVEN: A weighted complete graph G = (G, w) of even order.

FIND: A minimum-weight perfect matching in G.
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Note. The Minimum-Weight Matching Problem includes the Maximum Matching

Problem (Problem 16.1). The input graph for which we want a maximum matching

can be embedded in a complete graph of even order, and then a weight of 0 assigned

to each vertex of the original graph and a weight of 1 to all other edges. Since weight

is being minimized, the edges of the original graph (of weight 0) are included in the

solution whenever possible. Of course, the edges of weight 1 in the minimum weight

matching of the complete graph are then ignored to give the maximum matching of

the original graph. Jack Edmonds gave a polynomial time algorithm in “Maximum

Matching and a Polyhedron with 0,1 Vertices,” Journal of Research of the National

Bureau of Standards—B, 69B(1–2), 125–130 (1965); a copy is online on National

Institute of Standards and Technology website (accessed 7/2/2022). Some of his

ideas are addressed in Section 17.4, “Coverings by Perfect Matchings”; see Exercises

17.4.5 to 17.4.7.
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