Chapter 17. Edge Colourings

Section 17.1. Edge Chromatic Number

Note. Just as we considered colouring vertices in Chapter 14, we now consider assigning colours to edges of a graph. We will see that many of the ideas from the vertex setting (such as chromatic number) carry over to analogous ideas in the edge setting.

Definition. A k-edge colouring of graph $G=(V, E)$ is a mapping $c: E \rightarrow S$, where S is a set of k colours (usually denoted $S=\{1,2, \ldots, k\}$). An edge colouring is proper if adjacent edges receive distinct colours. A graph is k-edge colourable if it has a k-edge-colouring. The edge chromatic number, denoted $\chi^{\prime}(G)$, of a graph G is the minimum k for which G is k-edge colourable, and G is k-edge-chromatic if $\chi^{\prime}(G)=k$.

Note 17.1.A. Just as the colour classes of a vertex colouring of graph G yield stable sets (and also a partition of the vertex set; see Note 14.1.A), a similar idea holds for edge colourings. A k-edge-colouring results in a partition $\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}$ of edge set E, where E_{i} denotes the (possible empty) set of edges assigned colour i. Though we have defined an edge colouring as a mapping, we commonly discuss edge colourings in terms of this type of partitioning. In a proper k-edge-colouring the edge set partition has each E_{i} as a matching of G. A graph with loops does not have a proper edge colouring. In this chapter, all graphs are loopless and a proper edge colouring is referred to as simply an "edge colouring."

Note. The graph G of Figure 17.1 with edge set $\{a, b, c, d, e, f\}$ is f-edge-colourable where the partition of the edge set based on the 4 -colours is $\{\{a, g\},\{b, e\},\{c, f\},\{d\}\}$. It is to be shown in Exercise 17.1.3 that this graph is not 3-edge colourable. Therefore $\chi^{\prime}(G)=4$. In any graph G, there are Δ edges incident to some single vertex of G, so that a (proper) edge colouring of G requires at least Δ colours. That is, $\chi^{\prime} \geq \Delta$.

Fig. 17.1. A 4-edge-chromatic graph

Example 17.1. The Timetabling Problem.

Consider the problem in a school of assigning m teachers $x_{1}, x_{2}, \ldots, x_{m}$ to n classes $y_{1}, y_{2}, \ldots, y_{n}$. The goal is to minimize the number of periods required to schedule the classes. Let $p_{i j}$ denote the number of periods that teacher x_{i} is assigned to teach class y_{j} (at ETSU, this is the teaching "work load" of a faculty member). We translate this into graph theory by introducing bipartite graph $H[X, Y]$ where $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, and vertices x_{i} and y_{j} are joined by $p_{i j}$ edges. In Exercise 17.1.10(a) it is to be shown that finding a minimum number of periods is equivalent to finding a (proper) k-edge-colouring of $H[X, Y]$ for smallest k.

Note. As discussed above, we easily have the lower bound of Δ on the edge chromatic number χ^{\prime}. Below, we show that this lower bound is attained by every bipartite graph. We'll see in the next section that for simple graphs $\chi^{\prime} \leq \Delta+1$ (in Vizing's Theorem, Theorem 17.4). Our proofs of these results are contructive and require us to introduce the following definitions.

Definition. Let H be a spanning subgraph of graph G and let $\mathcal{C}=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$ be a k-edge-colouring of H. Colour i is represented at a vertex v if it is assigned to some edge of H incident with v; otherwise it is available at vertex v. A colour is available for an edge of $E(G) \backslash E(H)$ if it is available at both ends of the edge.

Note/Definition 17.1.B. In the notation of the previous definition, edge $e \in$ $E(G) \backslash E(H)$ may be assigned any colour available to it to extend colouring \mathcal{C} to a k-edge-clouring of $H+e$ (this the term "available"). For i and j two distinct colours, define $H_{i j}=H\left[M_{i} \cup M_{j}\right]$. By Note 17.1.A, M_{i} and M_{j} are (edge- disjoint matchings and $M_{i} \triangle M_{j}=M_{i} \cup M_{j}$ so that $H\left[M_{i} \cup M_{j}\right]=G\left[M_{i} \triangle M_{j}\right]$. As seen in the proof of Berge's Theorem (Theorem 16.3) the components of $H_{i j}$ are even length cycles and paths. The path-components of $H_{i j}$ are $i j$-paths. We use $i j$-paths in the proof of the following, which gives the edge chromatic number of a bipartite graph.

Theorem 17.2. If G is bipartite, then $\chi^{\prime}=\Delta$.

Note. Bondy and Murty claim that the proof technique of Theorem 17.2 can be used to "easily extract" a polynomial-time algorithm for finding a Δ-edge-colouring of a bipartite graph (see page 459).

