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Section 2.6. Even Subgraphs

Note. Recall from Section 2.4, “Decompositions and Coverings,” that an even

graph is a graph in which every vertex has even degree. In this section we consider

the symmetric difference of even subgraphs of a given graph and we see how even

subgraphs interact with edge cuts. We also define three vector spaces associated

with a graph, the edge space, the cycle space, and the bond space.

Definition. For a given graph G, an even subgraph of G is a spanning subgraph

of G which is even. (Sometimes we may use the term “even subgraph of G” to

indicate just the edge set of the subgraph.)

Note. Theorem 2.10 and Proposition 2.13 of the previous section allow us to

address the symmetric difference of two even subgraphs of a given graph, as follows.

Corollary 2.16. The symmetric difference of two even subgraphs is an even

subgraph.

Note. Bondy and Murty comment that “. . . we show in Chapters 4 [“Trees”] and

21 [“Integer Flows and Coverings”], [that] the even subgraphs of a graph play an

important structural role.” See page 64. In the context of even subgraphs, the

term “cycle” may be used to mean the edge set of a cycle, and the term “disjoint

cycles” may mean edge-disjoint cycles. With this convention, Veblen’s Theorem

(Theorem 2.7), which states that a graph admits a cycle decomposition if and only

if it is even, can be restated as follows.



2.6. Even Subgraphs 2

Theorem 2.17. A set of edges of a graph is an even subgraph if and only if it is

a disjoint union of cycles.

Note. A quick cautionary comment: In Introduction to Modern Algebra (MATH

4127/5125) is is shown that “Every permutation of a finite set is a product of

disjoint cycles.” See Theorem 9.8 in my online notes on II.9. Orbits, Cycles, and

the Alternating Groups. The similar wording of this result and our Theorem 2.17

is purely coincidental!

Note. The next result addresses the interaction of even subgraphs and edge cuts.

This result will be useful below when we define vector spaces associated with a

graph.

Proposition 2.18. In any graph, every (edge set of an) even subgraph meets every

edge cut in an even number of edges.

Note. Denote the set of all subsets of the edge set E of a graph G as E(G); that

is, E(G) is the power set of E, E(G) = P(E(G)). We denote the field of order 2 as

GF (2) (for “Galois field of order 2”), and of course GF (2) ∼= Z2 (here ∼= represents

a field isomorphism). We denote the elements of GF (2) as 0 and 1.

http://faculty.etsu.edu/gardnerr/4127/notes/II-9.pdf
http://faculty.etsu.edu/gardnerr/4127/notes/II-9.pdf
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Definition. For a graph G, the vector space formed on the set of vectors E(G)

with scalar field GF (2), where for E1, E2 ∈ E(G) we define vector addition as

E1 + E2 = E14E2 and scalar multiplication is defined as 0E1 = ∅ and 1E1 = E1,

is the edge space of graph G, also denoted E(G).

Note. In Exercise 2.6.2 it is to be shown that the edge space of a graph actually is

a vector space over GF (2). Notice that if sets of edges E1, E2 ∈ E(G) are disjoint,

then E1 + E2 = E14E2 = E1 ∪· E2, so when E(G) = {e1, e2, . . . , em} then a basis

(called the standard basis) for the edge space is given by {e1}, {e2}, . . . , {em} so

that dim(E(G)) = m. We can then write any E1 ∈ E(G) as E1 =
∑m

i=1 ai{ei}

where ai ∈ GF (2) for each i ∈ {1, 2, . . . ,m}. We can now use this standard basis

to put an inner product on E(G).

Definition. Let E1, E2 ∈ E(G). Suppose E1 =
∑m

i=1 ai{ei} and E2 =
∑m

i=1 bi{ei}

where {{e1}, {e2}, . . . , {em}} is the standard basis of E(G). The inner product of

E1 and E2 is

〈E1, E2〉 =

〈
m∑

i=1

ai{ei},
m∑

i=1

bi{ei}

〉
=

m∑
i=1

aibi.

If 〈E1, E2〉 = 0 then E1 and E2 are orthogonal, denoted E1 ⊥ E2.

Note 2.6.A. For E1, E2 ∈ E(G), we have E1 ⊥ E2 if and only if |E1 ∩ E2| is even

(in which case 〈E1, E2〉 consists of a sum of an even number of 1’s).
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Definition. For a graph G = (V, E), with each subset X of E (i.e., X ∈ E(G)),

define the incidence vector of X, denoted fX , as having |E| components given by

fX(e) = 1 if e ∈ X and fX(e) = 0 if e 6∈ X (so fX is a vector with |E| components

and each component is in GF (2)). Then fX ∈ GF (2)|E|. (We denote the vector

space of dimension |E| with scalar field GF (2) simply as GF (2)|E| = GF (2)E.)

Note. Of course we have that E1, E2 ∈ E(G) satisfy 〈E1, E2〉 = 0 if and only if

〈fE1
, fE2

〉 = 0.

Note 2.6.B. Consider graph G with edges e1, e2, e3, e4 as given here:

Then the power set of the edge set, P(E) = E(G), is

E(G) = {∅, {e1}, {e2}, {e3}, {e4}, {e1, e2}, {e1, e3}, {e1, e4}, {e2, e3},

{e2, e4}, {e3, e4}, {e1, e2, e3}, {e1, e2, e4}, {e1, e3, e4}, {e2, e3, e4}, {e1, e2, e3, e4}}.

Notice that |E(G)| = 24 = 16. The incidence vectors are then:

f∅ = [0, 0, 0, 0], f{e1} = [1, 0, 0, 0], f{e2} = [0, 1, 0, 0], f{e3} = [0, 0, 1, 0],

f{e4} = [0, 0, 0, 1], f{e1,e2} = [1, 1, 0, 0], f{e1,e3} = [1, 0, 1, 0], f{e1,e4} = [1, 0, 0, 1],

f{e2,e3} = [0, 1, 1, 0], f{e2,e4} = [0, 1, 0, 1], f{e3,e4} = [0, 0, 1, 1],
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f{e1,e2,e3} = [1, 1, 1, 0], f{e1,e2,e4} = [1, 1, 0, 1], f{e1,e3,e4} = [1, 0, 1, 1],

f{e2,e3,e4} = [0, 1, 1, 1], f{e1,e2,e3,e4} = [1, 1, 1, 1].

So {fX | X ∈ E(G)} consists of all 4-tuples of 0’s and 1’s. Together, these form the

vector space GF (2)4 (the 4-dimensional vector space with scalars from GF (2)).

Note. In Exercise 2.6.2, it is to be shown that the edge space of graph G is

isomorphic to the vector space GF (2)E where E is the edge set of G.

Note 2.6.C. The only even (spanning) subgraphs of the graph G given in Note

2.6.B are the graph with edge set ∅ and the graph with edge set {e2, e3, e4}. These

correspond to the vectors f∅ = [0, 0, 0, 0] and f{e2,e3,e4} = [0, 1, 1, 1]. So the subspace

of E(G) formed by the even subgraphs of G is isomorphic to {[0, 0, 0, 0], [0, 1, 1, 1]}.

Theorem 2.6.A. Let G be a graph. The set of all even subgraphs of G form a

subspace of the edge space of G.

Note 2.6.C. The edge cuts of the graph G given in Note 2.6.B (as we saw in

Figure 2.8 of Section 2.5) are {e1}, {e2, e3}, {e1, e2, e4}, {e1, e3, e4}, {e3, e4}, {e2, e4},

{e1, e2, e3}, and ∅. These correspond to the incidence vectors

[1, 0, 0, 0], [0, 1, 1, 0], [1, 1, 0, 1], [1, 0, 1, 1], [0, 0, 1, 1], [0, 1, 0, 1], [1, 1, 1, 0], [0, 0, 0, 0],

respectively.
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Note. We can easily modify the proof of Theorem 2.6.A by replacing the use of

Corollary 2.16 with Corollary 2.12 to get the following.

Theorem 2.6.B. Let G be a graph. The set of all edge cuts of G form a subspace

of the edge space of G.

Definition. For graph G, the vector space of all (edge sets of) even subgraphs of

G given in Theorem 2.6.A is the cycle space of G, denoted C(G). The vector space

of all edge cuts of G given in Theorem 2.6.B is the bond space of G, denoted B(G).

The dimension of the cycle space C(G) is the cyclomatic number of G.

Note. The cycle space C(G) of graph G (given in Note 2.6.B) consists of the two

vectors given in Note 2.6.C. Notice that this space is generated by the (edge set of)

the cycle in G, {e2, e3, e4}. To more clearly see this, consider f{e2,e3,e4} = [0, 1, 1, 1]

and consider span({[0, 1, 1, 1]}) in GF (2)4. So dim(C(G)) = 1.

Note. The bond space B(G) of graph G (given in Note 2.6.B) consists of the eight

vectors given in Note 2.6.C. Notice that this space is generated by the bonds of G,

which are given in Figure 2.8′ of Section 2.5: {e1}, {e2, e3}, {e3, e4}, and {e2, e4}.

To more clearly see this, consider f{e1} = [1, 0, 0, 0], f{e2,e3} = [0, 1, 1, 0], f{e3,e4} =

[0, 0, 1, 1], f{e2,e4} = [0, 1, 0, 1] and span({[1, 0, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1], [0, 1, 0, 1]})

in GF (2)4. Notice that these vectors are not linearly independent since [0, 1, 1, 0]+

[0, 0, 1, 1] = [0, 1, 0, 1]; in fact, dim(B(G)) = 3.
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Note 2.6.D. In Exercise 2.6.4(a) it is to be shown that the cycle space of graph

G (defined in terms of even subgraphs of G) is generated by the cycles of G. In

Exercise 2.6.4(b) it is to be shown that the bond space of graph G (defined in

terms of edge cuts of G) is generated by the bonds of G; thus, the names of these

spaces! In Exercise 2.6.4(c) it is to be shown that the cycle space and the bond

space are orthogonal complements of each other in the edge space of G; this is

to be accomplished by showing that the bond space of graph G is isomorphic to

the row space of its incidence matrix M over GF (2), and the cycle space of G is

isomorphic to its orthogonal complement (so that the cycle space is isomorphic to

the null space of M).

Note. For the graph G given in Note 2.6.B, we have that the cycle space satisfies

C(G) ∼= span({[0, 1, 1, 1]}) and the bond space satisfies

B(G) ∼= span({[1, 0, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1], [0, 1, 0, 1]}).

Notice that [0, 1, 1, 1] is orthogonal to each vector in the spanning set for (an isomor-

phic image of) B(G). Notice that dim(C(G))+dim(B(G)) = 1+3 = 4 = dim(E(G)).

So C(G) and B(G) are orthogonal complements in E(G). That is, C(G)⊥ = B(G)

and E(G) = C(G)⊕ B(G).

Note. We see in the previous note that the set of bonds form a generating set

(i.e., a spanning set) for the bond space but that it may not form a basis (and the

same holds for the set of cycles and the cycle space). In section 4.3 we will define a

“fundamental cycle” and a “fundamental bond” with respect to a given spanning
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tree of a connected graph. In Exercise 4.3.6(a) it is to be shown that, for a given

spanning tree T of a connected graph, the fundamental cycles with respect to T

form a basis of the cycle space and the fundamental bonds with respect to T form

a basis of the bond space.

Note. In fact we can describe the dimensions of the cycle space and bond space

of a given connected graph in terms of the number of edges m and the number of

vertices n of a graph G as follows:

dim(C(G)) = m− n + 1 and dim(B(G)) = n− 1.

This is Bondy and Murty’s Exercise 4.3.6(b) and is stated as Theorem 1.9.6 and

proved in Reinhard Diestel’s Graph Theory, Graduate Texts in Mathematics #173,

(Springer, 1997); see page 22. Notice this is consistent with our example above

where n = 4 and m = 4. Of course the dimension of the edges space is |E| = m,

as observed above.

Note. In Chapter 20, “Electrical Networks,” we consider edge spaces, cycle spaces,

and bond spaces over arbitrary scalar fields.

Note 2.6.E. Some insight on how to extend the idea of the edge space to an

arbitrary field is given in Norman Biggs’ Algebraic Graph Theory, 2nd Edition,

Cambridge University Press (1993). In Chapter 4, Cycles and Cuts, a vector space

over the field C of complex numbers is defined in terms of a finite set X. The set

of vectors is taken to be all functions f : X → C. Then for two such functions f
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and g and for scalar a ∈ C we define

(f + g)(x) = f(x) + g(x) and (af)(x) = af(x) for all x ∈ X.

The dimension of this vector space is then the finite number |X| and so, since the

scalar field is C, the vector space is isomorphic to C|X| (from the Fundamental

Theorem of Finite Dimensional Vector Spaces; see Theorem 5.1.2 of my online

notes for Fundamentals of Functional Analysis [MATH 5740] on 5.1. Groups, Fields,

and Vector Spaces). For graph G, the edge space is then the vector space of all

functions from the edge set of G, E(G), to C; the vertex space is similarly defined.

See page 23 of Biggs. Notice that this idea extends easily to functions mapping

sets to an arbitrary field F and that this results in an edge space isomorphic to

F|E|. In particular, with F = GF (2) we see that we get (up to isomorphism, at

least) the same idea as introduced above. In this setting, for edge set E(G) =

{e1, e2, . . . , em} and vector f : E(G) → GF (2) we have the association of f with

the vector [f(e1), f(e2), . . . , f(em)] ∈ GF (2)E (notice that this vector is in fact the

incidence vector fX for the set X = {ei | f(ei) = 1}).
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