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Section 5.2. Separations and Blocks

Note. In this section we introduce two ideas closely related to the concepts of a

cut vertex and a connected component. Some properties are given and the Double

Cover Conjecture is revisited.

Definition. A separation of a connected graph is a (edge) decomposition of the

graph into two nonempty connected subgraphs which have just one vertex in com-

mon. The common vertex is a separating vertex of the graph. The separating

vertices of a disconnected graph are the separating vertices of its components.

Note 5.2.A. A cut vertex of a graph is a separating vertex since we can take one

of the new components that result from the removal of the cut vertex, add back

the cut vertex and all edges between it and the one new component, plus take the

remaining new components and add back the cut vertex and all edges between it

and the remaining new components, to produce the desired partitioning:

However, a separating vertex need not be a cut vertex. Consider a vertex with a

loop and at least one other edge. It may not be a cut vertex (depending on its

neighbors) but it is a separating vertex since one of the parts of the partition in

the definition of “separation” is the loop and the separating vertex:
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In a loopless graph, a separating vertex yields a decomposition of the graph into

nonempty subgraphs from which the separating vertex can be removed yielding

more components of G−v than there are of G. That is, in a loopless graph, the cut

vertices and the separating vertices are identical. Figures 5.1 and 5.3 give the cut

vertices and the separating vertices for a particular graph:

Definition. A graph is nonseparable if it is connected and has no separating

vertices. A graph that is not nonseparable is said to be separable (whether it is

connected or not).
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Note 5.2.B. There are two nonseparable graphs on one vertex, namely K1 and

K1 with a loop. (A single vertex with multiple loops can be decomposed into

single loops in the sense of the use of the term in the definition of “separation.”)

All connected graphs on two or more vertices without separating vertices are loop-

less (as described above). Since a separation only involves the behavior of a vertex

and connectivity (through the existence of paths, say), then multiple edges are irrel-

evant so that a loopless graph is nonseparable if and only if its underlying simple

graph is nonseparable.

Note. Cycles are nonseparable graphs. Cycles are fundamental to the nonsepara-

bility of a graph as spelled out by H. Whitney in 1932 with the following.

Theorem 5.2. A connected graph is nonseparable if and only if any two of its

edges lie on a common cycle.

Note. We now address the second topic of this section, that of a “block.” We

will use the blocks of a graph to give a “sort-of” partition of the graph. Many

properties of a connected graph can be addressed by considering properties of the

blocks that make up the graph.

Definition. A block of a graph is a subgraph which is nonseparable and is maximal

with respect to this property.
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Note. Notice that a nonseparable graph has just one block (the graph itself). The

blocks of a (nontrivial) tree are the copies of K2 induced by its edges because every

vertex of tree of degree greater than 1 is a cut vertex and hence a separating vertex.

The separating vertices of Figure 5.3 produce the blocks of Figure 5.4(a):

Proposition 5.3. Let G be a graph. Then:

(a) any two blocks of G have at most one vertex in common,

(b) the blocks of G form a (edge) decomposition of G,

(c) each cycle of G is contained in a block of G.

Definition. For any graph G, define the graph B(G) with vertex set B ∪ S where

B is the set of blocks of G, and S is the set of separating vertices. In the edge set

of B(G) we have block B ∈ B(G) and separating vertex v ∈ S adjacent if and only

if B contains v. For connected graph G, graph B(G) is the block tree of G (we’ll

see below that B(G) actually is a tree when G is connected). If G is separable, the

blocks of G which correspond to leaves of B(G) are end blocks. An internal vertex

of a block of a graph G is a vertex which is not a separating vertex of G.
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Note 5.2.C. The block tree B(G) is bipartite with bipartition (B, S). Now a path

in G connecting vertices of G in distinct blocks (and so the path must pass though

some separating vertices of G) “gives rise to” a unique path in B(G) connecting

these same blocks (the uniqueness follows from the fact that any cycles in G are

contained within a single block of G by Proposition 5.3(c)). So if G is connected

then B(G) is connected. Also by Proposition 5.3(c), B(G) is acyclic. So if G is

connected then B(G) is a tree.

Note. Many properties of a graph can be addressed by considering the same

properties of the blocks of the graph. For example, in Exercise 5.2.5 it is to be

shown that a graph is even if and only if each of its blocks is even, and a graph is

bipartite if and only if each of its blocks is bipartite. Notice that these claims do
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not assume that the given graph is connected, but we can consider the connected

components of the graph and then the block tree of each component. In Exercise

5.2.8 it is to be shown that a spanning subgraph T of a connected G is a spanning

tree of G if and only if T ∩ B is a spanning tree of B for every block B of G.

Similarly, by Proposition 5.3 (b and c) a graph has a cycle double cover if and

only if each of its blocks has a cycle double cover. So the Cycle Double Cover

Conjecture can be reduced to considering nonseparable graphs (since blocks are,

by definition, nonseparable). We’ll see below in Theorem 5.5 that this idea can be

further refined.

Note. We now define a procedure that will be useful in addressing cycle decom-

positions and cycle coverings.

Definition. Let v be a vertex of a graph G and let e1 = vv1 and e2 = vv2 be two

edges of G incident to v. The operation of splitting off the edges e1 and e2 from

v consists of deleting e1 and e2 and then adding a new edge e joining v1 and v2.

(If v1 = v2 then e1 and e2 are parallel edges and splitting off e1 and e2 amounts to

replacing e1 and e2 with a loop on vertex v1 = v2.)

Note. Splitting off edges e1 and e2 can be illustrated as:

In the next result, some conditions are given under which splitting off edges can be

performed without creating cut edges.
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Theorem 5.4. The Splitting Lemma.

Let G be a nonseparable graph and let v be a vertex of G of degree at least four

with at least two distinct neighbors. Then some two nonparallel edges incident to

v can be split off so that the resulting graph is connected and has no cut edges.

Note. We observed above that we can address the Cycle Double Cover Conjecture

by considering nonseparable graphs. We can use the Splitting Lemma to show that

we can restrict ourselves to an even smaller collection of graphs.

Theorem 5.5. The Cycle Double Cover Conjecture is true if and only if it is true

for all nonseparable cubic graphs.

Note. In Veblen’s Theorem (Theorem 2.7) we saw that a graph has a cycle decom-

position if and only if the graph is even. In Exercise 5.2.12 additional properties of

cycle decompositions are given. The Splitting Lemma is to be used to show that

every even graph has an odd number of cycle decompositions, and that each edge

of an even graph lies in an odd number of cycles.
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