
6.2. Minimum-Weight Spanning Trees 1

Section 6.2. Minimum-Weight Spanning Trees

Note. In this section we consider spanning trees of edge-weighted graphs. Among

all the spanning trees, we seek one of minimum sum of edge weights. You probably

encountered this problem in Introduction to Graph Theory (MATH 4347/5347);

see my online notes for this class on Section 7.1. Spanning Tree Algorithms. There,

you likely saw Kruskal’s Algorithm. We present a different algorithm in this section,

but we will see Kruskal-s Algorithm in our Section 8.5. Greedy Heuristics where

we refer to it as the Bor
◦
uvka-Kruskal Algorithm (Algorithm 8.22). That algorithm

is also encountered in Introduction to to Operations Research 1 (not an official

ETSU class; see my online notes for the class on Section 6.2. Minimal Spanning

Tree Algorithm). We motivate the problem with an application.

Note. Bondy and Murty describe a problem of creating an electrical grid between

right locations in China, denoted B, C, G, N, S, T, W, Y. See Figure 6.5 below

where the distances between the locations are given (in kilometers). The problem

is to create the electrical grid with the minimum total connecting distance. We

solve the problem by considering an edge weighted complete graph K8 with vertices

corresponding to locations and edge weights representing distances. This is a special

case of the following more general problem.

Problem 6.8. Minimum-Weight Spanning Tree.

Given: a (edge) weighted connected graph G.

Find: a minimum weight spanning tree T in G.

https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-7-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-8-5.pdf
https://faculty.etsu.edu/gardnerr/5810-OR/Notes-Taha10/OR-Taha-6-2.pdf
https://faculty.etsu.edu/gardnerr/5810-OR/Notes-Taha10/OR-Taha-6-2.pdf


6.2. Minimum-Weight Spanning Trees 2

Definition. For a given weighted connected graph G, a tree T solving the Minimum-

Weight Spanning Tree problem is an optimal tree.

Note. The algorithm we present below is due to Vojtěch Jarnik and R. C. Prim.

Jarnik’s work appears in “O jistém problému minimálńım [About a Certain Min-

imal Problem]” Práce Moravské Pŕırodovedecké Spolecnosti, 6, 57–63 (1930); this

work was originally in a letter to Czech mathematician Otakar Bor
◦
uvka following

Bor
◦
uvka’s publication of his algorithm. You can see Jarnik’s paper online on the

Czech Digital Mathematics Library. Prim’s work appears rather later in “Shortest

Connection Networks and Some Generalizations,” The Bell System Technical Jour-

nal, 36(6), 1389–1401 (1957); it seems challenging to find a free copy of this online.

An arbitrary vertex r is selected as the root of tree T . At each stage the edge added

to the current tree T is any edge of least weight in the edge cut associated with

https://dml.cz/handle/10338.dmlcz/500725


6.2. Minimum-Weight Spanning Trees 3

T . The vertices are coloured black as they are added to T . Each vertex is assigned

an infinite cost, c(v) = ∞. This requires us to impose the condition “x < ∞”

for all x ∈ R on the inequality symbol (this is standard interpretation in analysis

when dealing with the extended real numbers, R ∪ {∞}). Each uncoloured vertex

is assigned a “provisional” cost c(v) that is the least weight of an edge linking v to

some black vertex u (i.e., some u already in T ), if such u exists. Vertex u is the

named the provisional predecessor of v, p(v). These provisional labels are updated

at each stage of the algorithm.

Algorithm 6.9. The Jarńınik-Prim Algorithm.

Input: a weighted connected graph (G, w)

Output: an optimal tree T of G with predecessor function p, and its weight w(T )

1. set p(v) := ∅ and c(v) := ∞ for v ∈ V , and w(T ) := 0

2. choose any vertex r (as the root)

3. replace c(r) by 0

4. while there is an uncoloured vertex do

5. choose such a (uncoloured) vertex u of minimum cost c(u)

6. colour u black

7. for each uncoloured vertex v such that w(uv) < c(v) do

8. replace p(v) by u and c(v) by w(uv)

9. end for

10. replace w(T ) by w(T ) + c(u)

11. end while

12. return (p, w(T )).



6.2. Minimum-Weight Spanning Trees 4

Note. I have interchanged Steps 9 and 10 from the book’s version of the algorithm.

This is because the updating of the weight of the tree must be increased by c(u)

when u is added to T . The book has this inside the for loop and this can cause

a problem in two ways. If there are for uncoloured vertices v as describe, the the

weight w(T ) will not be updated. Second, if there are multiple such uncoloured

vertices v then w(T ) is updated multiple times! One vertex is added to T (vertex

u) and so we need to replace w(T ) with w(T ) + c(u) exactly once. In the example

we work you will see that both problems can occur (namely (1) no vertices v with

w(uv) < c(v) and (2) multiple vertices v with w(uv) < c(v)).

Definition. A rooted spanning tree output by the Jarńık-Prim Algorithm is a

Jarńık-Prim tree.

Example 6.2.A. We now apply Algorithm 6.9 to the Chinese electrical grid prob-

lem. We start (in Step 2) with choosing Y as the root, and so (Step 3) c(Y ) = 0

and c(v) = ∞ for all other vertices. As we start the while loop, Step 5 sets u = Y

and Y is coloured black in Step 6. Next, in Steps 7–9 (in my numbering scheme)

for the seven uncoloured vertices v adjacent to u = Y (i.e., all vertices except Y

since we have G = K8) we look for edges between u = Y and v of weight less than

c(v) = ∞. This is all seven other vertices and so (Step 8) we set p(v) = u and

set c(v) = w(uv). This gives u = Y as the predecessor of all other vertices (so at

this stage the tree is a star with center Y ) and the costs are simply the distances



6.2. Minimum-Weight Spanning Trees 5

between Y and v (given in the last column of the array in Figure 6.5):

c(B) = 1117, c(C) = 473, c(G) = 867, c(N) = 727,

c(S) = 962, c(T ) = 1080, c(W ) = 285.

This completes the for steps. Since c(u) = c(Y ) = 0. Step 10 gives w(T ) = 0.

On the second pass through the while loop, Step 5 sets u = W and W is

coloured black in Step 6. In Steps 7–9 for the six uncoloured vertices v adjacent to

u = W we look for edges between u = W and v of weight less than c(v). Thus we

consider

v c(v) w(uv) = w(Wv) w(uv) < c(v)?

B 1117 1057 YES

C 473 750 NO

G 867 837 YES

N 727 459 YES

S 962 681 YES

T 1080 988 YES

Notice that w(uv) is the second-to-the-last column of the array in Figure 6.5. So

Step 8 is processed for v ∈ {B, G, N, S, T} to give new costs and a new predecessor

(u = W ) for these vertices resulting in

p(B) = W, p(C) = Y, p(G) = W, p(N) = W, p(S) = W, p(T ) = W

c(B) = 1057, c(C) = 473, c(G) = 837,

c(N) = 459, c(S) = 681, c(T ) = 988.

On the third pass through the while loop, Step 5 sets u = N and N is coloured

black in Step 6. In Steps 7–9 for the five uncoloured vertices v adjacent to u = N



6.2. Minimum-Weight Spanning Trees 6

we look for edges between u = N and v of weight less than c(v). Thus we consider:

v c(v) w(uv) = w(Wv) w(uv) < c(v)?

B 1057 901 YES

C 473 1199 NO

G 837 1133 NO

S 681 267 YES

T 988 800 YES

So Step 8 is processed for v ∈ {B, S, T} to give new costs and a new predecessor

(u = N) for these vertices resulting in:

p(B) = N, p(C) = Y, p(G) = W, p(S) = N, p(T ) = N

c(B) = 901, c(C) = 473, c(G) = 837, c(S) = 267, c(T ) = 800.

Since c(u) = c(N) = 459, Step 10 gives w(T ) = 285 + 459 = 744.

On the fourth pass through the while loop, Step 5 sets u = S and S is coloured

black in Step 6. In Steps 7–9 for the four uncoloured vertices adjacent to u = S we

look for edges between u = S and v of weight less than c(v). Thus we consider:

v c(v) w(uv) = w(Wv) w(uv) < c(v)?

B 901 1078 NO

C 473 1430 NO

G 837 1197 NO

T 800 970 NO

So Step 8 is not processed. Since c(u) = c(S) = 267, Step 10 gives w(T ) =

744 + 267 = 1011.



6.2. Minimum-Weight Spanning Trees 7

On the fifth pass through the while loop, Step 5 sets u = C and C is coloured

black in Step 6. In Steps 7–9 for the three uncoloured vertices adjacent to u = C

we look for edges between u = C and v of weight less than c(v). Thus we consider

v c(v) w(uv) = w(Wv) w(uv) < c(v)?

B 901 1457 NO

G 837 978 NO

T 800 1442 NO

So Step 8 is not processed. Since c(u) = c(C) = 473, Step 10 gives w(T ) =

1011 + 473 = 1484.

On the sixth pass through the while loop, Step 5 sets u = T and T is coloured

black in Step 6. In Steps 7–9 for the three uncoloured vertices adjacent to u = T

we look for edges between u = T and v of weight less than c(v). Thus we consider

v c(v) w(uv) = w(Wv) w(uv) < c(v)?

B 901 111 YES

G 837 1820 NO

So Step 8 is processed for v = B to give a new cost and a new predecessor for

B: p(B) = T and c(B) = 111. Since c(u) = c(T ) = 800, Step 10 gives w(T ) =

1484 + 800 = 2284.

On the seventh pass through the whole loop, Step 5 sets u = B and B is

coloured block in Step 6. In Steps 7–9 for the one uncoloured vertex adjacent to

C, we consider the edge between u = B and v = G. Again we consider:

v c(v) w(uv) = w(Wv) w(uv) < c(v)?

G 837 1892 NO



6.2. Minimum-Weight Spanning Trees 8

So Step 8 is not processed. Since c(u) = c(B) = 111 Step 10 gives w(T ) =

2284 + 111 = 2395.

On the eighth and final pass through the while loop, Step 5 sets u = G and G

is coloured black in Step 6. Since there are no uncoloured vertices, Step 8 is not

processed. Step 10 gives w(T ) = 2395 + 837 = 3232.

With the algorithm complete, we have the predecessors and costs:

Y = root, p(B) = T, p(C) = Y, p(G) = W,

p(N) = W, p(S) = N, p(T ) = N, p(W ) = Y.

Figure 6.6 below shows that tree T , with the edges numbered in the order in which

they were added to T . Notice that we have:

Edge # Edge Distance

1 Y W 285

2 WN 459

3 NS 267

4 Y C 473

5 NT 800

6 TB 111

7 WG 837

The distances sum to 3232 (kilometers), as stated above. The next theorem guar-

antees that the Jarńık-Prim Algorithm in fact yields an optimal tree.



6.2. Minimum-Weight Spanning Trees 9

Theorem 6.10. Every Jarńık-Prim tree is an optimal tree.

Revised: 6/5/2022


