
8.1. Computational Complexity 1

Chapter 8. Complexity of Algorithms

Note. In this chapter, we give several of the core ideas of the class Mathematical

Modeling Using Graph Theory (MATH 5870). We classify problems according to

their level of difficulty in terms the known algorithms to solve them. We define the

classes P , NP , and co-NP (in Section 8.1). We consider polynomial-time algo-

rithms and polynomial reductions which reduce given problems to those of known

solution and the reduction is itself a polynomial time algorithm (in Section 8.2). We

define the NP-complete problems in Section 8.3 and mention the Traveling Sales-

man/Salesperson Problem (TSP) again. In Section 8.4 we consider approximations

of inefficient algorithms with efficient ones. We consider greedy heuristics in Sec-

tion 8.5, with attention paid to the Bor
◦
ukvka-Kruskal Algorithm (Algorithm 8.23)

for finding a minimum weight spanning tree. In Section 8.6, we briefly consider the

numerical approaches of linear programming and integer programming.

Section 8.1. Computational Complexity

Note. In this section, we give several definitions needed in this chapter. We don’t

present any proofs, but state some problems and conjectures.

Definition. An instance of a problem is an application of the problem to one

specific member of the family of graphs (or digraphs) to which the problem can

apply. An algorithm for solving a problem is a well-defined computational procedure

which accepts any instance of the problem as input and returns a solution to the

problem as output.

8.1. Computational Complexity 2

Note. As examples of these definitions, an instance of the Minimum-Weight Span-

ning Tree Problem (problem 6.8 of Section 6.2) is the problem of finding an optimal

tree in a particular given weighted connected graph. The Harńı-Prim Algorithm

(Algorithm 6.9) is an algorithm that accepts as input a weighted connected graph

and returns as output an optimal (i.e., minimal weight) tree.

Note. In considering algorithms, we are interest in two things: (1) that the pro-

posed algorithm actually works and produced the required output, and (2) the ef-

ficiency of the algorithm. We have seen, for example, that Algorithm 3.3 (Fleury’s

Algorithm of Section 3.3. Euler Tours) returns an Euler tour for a connected graph

in Theorem 3.4, and that Algorithm 6.9 (the Jańıl-Prim Algorithm of Section 6.2.

Minimum-Weight Spanning Trees) returns an optimal tree in Theorem 6.10. In

this chapter, we are interested in the efficiency of algorithms.

“Definition.” The computational complexity (or simply complexity) of an algo-

rithm, is the number of basic computational steps (such as arithmetical operations

and comparisons) needed to complete the algorithm. This number depends on the

size of the input, in our case the size of a graph G (usually related to the number

of vertices and/or the number of edges, but possibly containing other information

such as a weight on the edges). If the complexity is bounded above by a poly-

nomial in the input size, the algorithm is called a polynomial-time algorithm. If

the bounding polynomial is of degree 1, then the algorithm is linear-time, if the

bounding polynomial is of degree 2 then the algorithm is quadratic-time, and so

forth.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-3-3.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-6-2.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-6-2.pdf

8.1. Computational Complexity 3

Note 8.1.A. If a polynomial time-algorithm is known for a problem, then the

algorithm is “computationally feasible, even for large input graphs” (see page 174

of Bondy and Murty). In contrast, if an algorithm is not polynomial-time and

instead is exponential in the size of the input, then it is not practical to run,

except for “small” inputs. We denote the class of problems which are solvable by

polynomial-time algorithms as P .

Note. The tree-search algorithms discussed of Chapter 6, the Breadth-First Search

(Algorithm 6.1), Depth-First Search (Algorithm 6.4), the Jarńıl-Prim Algorithm

(Algorithm 6.9), and Dijkstra’s Algorithm (Algorithm 6.12), are polynomial-time

algorithms. For example, in Breadth-First Search, each edge is examined for pos-

sible inclusion in the tree just twice: in Step 8 when one end of the edge is used to

look for uncoloured neighbours, and a second time, also in Step 8, when the other

end of the edge is considered for uncoloured neighbours. The Depth-First Search is

similar (see its Step 10). So these two algorithms are linear in the number of edges

m. However, the Max-Flow Min-Cut algorithm (Algorithm 7.9) is not in the class

P . In Exercise 8.1.1 it is to be shown, using a very elementary network, that the

Max-Flow Min-Cut algorithm can perform an arbitrarily large number of iterations

before returning a maximum flow.

Note. Bondy and Murty comment (see page 175): “. . . our analysis of these algo-

rithms is admittedly cursory, and leaves out many pertinent details. . . .” They give

as a more formal, rigorous source Christos Papadimitriou’s Computational Com-

8.1. Computational Complexity 4

plexity, Addison Wesley Publishing (1994). A reading of the contents of this book

reveals that it is indeed deep! Its Part I is on algorithms and it covers Turing ma-

chines and computability. Part II is on logic and covers Boolean logic, first-order

logic, and undecidability. Part III is the most relevant part to our current con-

versation, and covers complexity classes, reduction, NP-complete problems, and

co-NP problems (topics we discuss below). Parts IV and V give more details on

complexity and consider the class P and classes beyond NP .

Note. In addition to the class P of problems which are solvable by polynomial-time

algorithms, there many basic problems for which it is unknown whether polynomial-

time algorithms may possibly exist or not. One such problem is determining

whether two graphs are isomorphic or not (we will state the as Problem 8.11 in

hrefhttps://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-

GT-6-1.pdfSection 8.3. NP-Complete Problems). This leads to a class of prob-

lems for which it is not known whether a polynomial-time algorithm may exist

or not. This class of problems is denoted NP , which stands for nondeterministic

polynomial-time. We give additional explanation of this below, but will with some

informality. Bondy and Murty reference D. B. Shmoys and É. Tardos’s “Computa-

tional Complexity,” which appears as Chapter 29, pages 1599–1647, in Handbook of

Combinatorics, Volume 2, edited by R. L. Graham, M. Grötschel, and L. Lovász,

Elsevier Science B.V. (1995). This dense but rigorous work contains very formal

definitions of the classes P , NP , and NP-complete. We now consider the more

informal approach of Bondy and Murty.

8.1. Computational Complexity 5

“Definition.” A decision problem is a question whose answer is either ‘yes’ or

‘no.’ A decision problem belongs to class P if there is a polynomial-time algorithm

that solves any instance of the problem.

Note. Bondy and Murty next use the undefined term “certificate.” We appeal

to the Wikipedia page on “certificate” for some insight on this idea. The next

definition is a paraphrasing of the Wikipedia information.

“Definition.” A certificate is a string that certifies the answer to a computation.

We say “string” because it is represented as a sequence of 0’s and 1’s in the theo-

retical setting. A certificate is a “solution path” which is used to check whether a

problem gives the answer ‘yes’ or ‘no.’

“Definition.” A decision problem belongs to the class NP if, given any instance

of the problem whose answer is ‘yes,’ there is a certificate validating this fact which

can be checked in polynomial time. Such a certificate is called a succinct certificate.

A decision problem belongs to the class co-NP if, given any instance of the problem

whose answer is ‘no,’ there is a certificate validating this fact which can be checked

in polynomial time.

Note. In other words, a decision problem is in class co-NP if there is a succinct

certificate that confirms that the decision problem has answer ‘no.’ The reason

this class is called “co-NP” is because it deals with the complement of a NP

problem (that is, a problem involving a negation so that the ‘yes’ involved in an

NP problem is replaced with a ‘no’ in a co-NP problem).

https://en.wikipedia.org/wiki/Certificate_(complexity)

8.1. Computational Complexity 6

Note. Since the class P consists of decision problems for which there is a polynomial-

time algorithm that solves any instance of the problem (where both decisions

‘yes’ and ‘no’ are covered), then we have P ⊆ NP and P ⊆ co-NP . That is,

P ⊆ NP ∩ co-NP .

Note. Let G be an arbitrary graph and consider the decision problem of if G is

bipartite. To illustrate the (vague) idea of a certificate, we have that a bipartite

graph with bipartition (X, Y) is a succinct certificate (in which case the decision

problem yields ‘yes’) since it suffices to check that each edge of the graph has one

end in X and one end in Y . That is, the decision problem is in the class NP Also,

by Theorem 4.7, a non bipartite graph contains an odd cycle, so any such cycle is a

succinct certificate (in which case the decision problem yields ‘no’). So the decision

problem is also in the class co-NP . We have then that the decision problem is in

NP ∩ co-NP . This alone does not imply that the decision problem is in P , but

it is to be shown in Exercise 6.1.3 that this is in fact the case (so concerns over

checking instances of the problem in polynomial time are allayed).

Note. We now consider the following problem.

Problem 8.1. Hamilton Cycle.

Given: a graph G.

Decide: Does G have a Hamilton cycle?

If the decision problem has answer ‘yes’ then a Hamilton cycle would serve as a

succinct certificate. So this problem is in the class NP . But if the graph does not

8.1. Computational Complexity 7

have a Hamilton cycle, we do not know what to use as a succinct certificate! This

does not mean that the problem is not in co-NP ; in fact, it is unknown whether

the problem is in coNP or not. This is discussed more in Chapter 18. Hamilton

Cycles.

Note. We have stated that P ⊆ NP . A natural question is whether these classes

are in fact equal (or not). It was conjectured by Stephen Cook (December 14,

1939–present) in 1971 that these classes are different. His conjecture appears in

“The complexity of theorem proving procedures.” Proceedings of the Third Annual

ACM Symposium on Theory of Computing, 151-158 (1971). The conjecture was

independently made by the Russian Leonid Levin (November 2, 1948–present) in

“Universal Enumeration Problems” [in Russian],Problems of Information Trans-

mission, 9(3), 115-116 (1973). You can view Cook’s paper on the ACM Digitial

Library webpage, and Levin’s paper in Russian is online on the Problems of In-

formation Transmission webpage. Bondy and Murty, untraditionally, also include

Jack R. Edmonds (April 5, 1934–present) in their name of the conjecture:

Conjecture 8.2. The Cooks-Edmonds-Levin Conjecture.

P 6= NP .

Note. Jack Edmonds in “Minimum Partition of a Matroid into Independent Sub-

sets,” Journal of Research of the Natural Bureau of Standards—B. Mathematics

and Mathematical Physics, 69B(1 and 2), 67–72 (1965) (available online at the

NIST Technical Series Publications webpage) proposed the following conjecture

https://dl.acm.org/doi/10.1145/800157.805047
https://dl.acm.org/doi/10.1145/800157.805047
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=914&option_lang=rus
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=914&option_lang=rus
https://nvlpubs.nist.gov/nistpubs/jres/69B/jresv69Bn1-2p67_A1b.pdf

8.1. Computational Complexity 8

(notice that this predates the work of Cook and Levin):

Conjecture 8.3. Edmonds Conjecture.

P = NP ∩ co-NP .

In fact, Jack Edmonds has a rock with the conjecture engraved on it in his yard in

Ontario:

Image from Wikipedia webpage on Jack Edmonds

One of Jack Edmonds’ big contributions to graph theory is his paper “Paths, Trees,

and Flowers, ” Canadian Journal of Mathematics, 17, 449–467 (1965), available

online on Javier Bernal’s webpage (on the National Institute of Standards and

Technology (NIST) U.S. Department of Commerce server). The webpages in the

last two notes were accessed on 5/27/2022.

Note. We finish this section by mentioning two classes offered by the ETSU

Department of Computing. Both are graduate-only classes and cover material

mentioned in this section:

https://en.wikipedia.org/wiki/Jack_Edmonds
https://math.nist.gov/~JBernal/p_t_f.pdf

8.1. Computational Complexity 9

CSCI 5610. Formal Languages and Computational Complexity. (Prerequi-

sites: MATH 2710, CSCI 2210 or consent of the instructor.) Problem-solving

is a fundamental aspect of computer science. This course teaches students how

to reduce a computational problem to its simplest form and analyze the prob-

lem to determine its inherent computational complexity. Topics include formal

languages and automata theory, Turing machines, computational complexity,

and the theory of NP-completeness. When Offered: Variable.

CSCI 5620. Analysis Of Algorithms. (Prerequisites: Differential and integral

calculus, discrete structures, data structures.) This course covers basic tech-

niques for analyzing algorithmic complexity. It describes the design and anal-

ysis of selected algorithms for solving important problems that arise often

in applications of computer science, including sorting, selection, graph the-

ory problems (e.g., shortest path, graph traversals), string matching, dynamic

programming problems, NP-complete problems. When Offered: Fall, alternate

years [odd falls].

Revised: 6/25/2022

