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Chapter 9. Connectivity

Section 9.1. Vertex Connectivity

Note. Consider the graphs on five vertices in Figure 9.1.

Figure 9.1

Each is connected, but to different degrees. Graph G1 is a tree so that the deletion

of any edge produces a disconnected graph. Graph G2 cannot be disconnected by

the deletion of one edge, but can be disconnected by the deletion of one vertex (the

cut-vertex of degree 4). Graph G3 has neither cut edges nor cut vertices, as is the

case for graph G4. Our intuition tells us that G4 = K5 is more connected than G3.

We introduce two connectivity parameters, one related to vertices and one related

to edges.

Definition. Let x and y be distinct vertices in graph G. The local connectivity

between x and y is the maximum number of pairwise internally disjoint xy-paths,

denoted p(x, y). (Recall that two xy-paths are internally disjoint if the only vertices

they share are x and y.)
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Note. We can put the local connectivities of a graph in a matrix where the entries

are indexed by pairs of vertices. Figures 9.2(a,b) gives a graph and the matrix of

local connectivities (notice that we leave p(x, x) undefined).

Figure 9.2(a,b).

Definition. A nontrivial graph G is k-connected if p(u, v) ≥ k for every pair of

distinct vertices u and v of G. We take (by definition) the trivial graphs to be both

0-connected and 1-connected, but not k connected for k > 1. The connectivity

of G, κ(G), is the maximum value of k for which G is k-connected (and so the

connectivity of G is the minimum value of p(u, v) over all distinct vertices u and v

of G). That is, for nontrivial graph G,

κ(G) = min{p(u, v) | u, v ∈ V (G), u 6= v}.
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Note. It is common to define the connectivity κ(G) as the minimum size of a

vertex cut. This is the approach taken in Bondy and Murty’s Graph Theory with

Applications, North-Holland 1976 (see their Section 3.1. Connectivity) and in Béla

Bollabás’s Modern Graph Theory, Springer 2002 (see his Section III.2. Connectivity

and Menger’s Theorem). The equivalence of these definitions is given by Menger’s

Theorem (see Theorem 9.1 and Note 9.1.C below).

Note. By Exercise 3.1.4, graph G is connected if and only if for any distinct

vertices u and v of G, G contains a uv-path. Therefore, a graph is connected if

and only if it is 1-connected. Equivalently, a nontrivial graph G is disconnected if

it has connectivity κ(G) = 0. The graphs in Figure 9.1 above satisfy κ(G1) = 1,

κ(G2) = 1, κ(G3) = 3, and κ(G4) = 4. For example, in G3 we have three internally

disjoint paths between different “types” of vertices as follows:

The graph in Figure 9.2(a) is 1-connected and 2-connected, but is not 3-connected
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(because there are only two internally disjoint paths between u and y, say) so that

its connectivity is 2.

Note 9.1.A. Consider Kn where n ≥ 2. For x and y vertices of Kn, there is one

path of length one connecting x and y (which has no internal vertices), and there

are n − 2 paths of length two connecting x and y (one through each of the n − 2

vertices of Kn except for x and y). These n − 1 paths are internally disjoint (and

there can be no more internally disjoint paths from these) so p(x, y) = n− 1. This

is true for any pair of vertices in Kn, so κ(Kn) = n− 1 where n ≥ 2.

Note 9.1.B. In computing the local connectivity p(x, y), we are interested in

internally disjoint paths so, except in the case of paths of length one, parallel

edges do not affect p(x, y). So, except when considering paths of length one, we

may as well consider the underlying simple graph of a graph G. If the underlying

simple graph of graph G is complete and x and y are joined by µ(x, y) links (i.e.,

nonloops), then there are µ(x, y) paths of length one joining x and y and, as above,

n − 2 internally disjoint paths of length two joining x and y (and there can be

no additional paths internally disjoint from these). So p(x, y) = n − 2 + µ(x, y).

The connectivity of any nontrivial graph G whose underlying simple graph is a

complete graph is κ(G) = n−2+µ where µ is the minimum edge multiplicity in G.

Now if x and y are nonadjacent in graph H (and so are vertices of a graph whose

underlying simple graph is not complete) then there are at most n − 2 internally

disjoint paths connecting x and y. In this case, the connectivity of H is at most

n−2. Next we want to relate the connectivity of a graph to the number of vertices

whose deletions result in a disconnected graph.
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Definition. Let x and y be distinct nonadjacent vertices of graph G. An xy-vertex-

cut is a subset S of V \ {x, y} such that x and y belong to different components of

G− S. In this case we say S separates x and y. The minimum size of a vertex cut

separating x and y is denoted by the function c(x, y), called the local cut function

of G (which is undefined if x = y or x and y are adjacent). A vertex cut separating

some pair of nonadjacent vertices of G is a vertex cut of G, and one with k elements

is a k-vertex cut.

Note. In Figure 9.2(a,c), an example of the local cut function is given in matrix

form:

Figure 9.2(a,c).
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Note. A complete graph has no vertex cuts, nor does any graph whose underlying

simple graph is complete. In fact, these are the only graphs with no vertex cuts since

we will show in Theorem 9.2 below that if G has at least one pair of nonadjacent

vertices, then the size of a minimum vertex cut of G is equal to the connectivity of

G. First, we need a theorem of K. Menger from 1927. The inductive proof given

below is due to F. Göring in 2000.

Definition. To shrink a proper subset X of vertices in graph G is to delete all

edges between vertices of X and then identify the vertices of X as a single vertex.

The resulting graph is denoted G/X (read “G modulo X”).

Theorem 9.1. Menger’s Theorem (Undirected, Vertex Version).

In any graph G(x, y), where x and y are nonadjacent, the maximum number of

pairwise internally disjoint xy-paths is equal to the minimum number of vertices

in an xy-vertex-cut, that is, p(x, y) = c(x, y).

Note 9.1.C. The equality in Menger’s Theorem implies

min{p(u, v) | u, v ∈ V, u 6= v, uv 6∈ E} = min{c(u, v) | u, v ∈ V, u 6= v, uv 6∈ E} (9.2)

If G is a graph that has at least one pair of nonadjacent vertices, then the right

hand side of (9.2) is the size of a minimum vertex cut of G (since c(u, v) is undefined

for adjacent u and v). The connectivity of G is

κ(G) = min{p(u, v) | u, v ∈ V, u 6= v}
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and notice that there is no constraint of uv 6∈ E in the definition of κ. In the

next result we show, using Menger’s Theorem, that for G with at least one pair of

nonadjacent vertices, κ can be computed using non-adjacent vertices only.

Theorem 9.2. If G has at least one pair of nonadjacent vertices, then

κ(G) = min{p(u, v) | u, v ∈ V, u 6= v, uv 6∈ E}. (9.3)

Note. Combining Theorem 9.1 and Theorem 9.2, we see that for a graph G with

at least one pair of nonadjacent vertices,

κ(G) = min{c(u, v) | u, v ∈ V, u 6= v, uv 6∈ E}. (9.4)
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