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Section 9.4. Three-Connected Graphs

Note. We consider certain types of decompositions of 2-connected graphs into

3-connected components. We then consider an application related to The Double

Cycle Cover Conjecture, and prove a result used in our study of planar graphs in

the next chapter.

Note. To review, a graph G is 3-connected if for every pair of distinct vertices u

and v in G, there are at least three internally disjoint paths between u and v. By

convention, in this section we only consider loopless graphs.

Definition. Let G be a connected graph which is not complete, let S be a vertex

cut of G, let X be the vertex set of a component of G− S. The subgraph H of G

induced by S ∪X is an S-component of G.

Definition. If G is 2-connected and S = {x, y} is a 2-vertex cut of G, then we mod-

ify each S-component by adding a new edge between x and y. This edge between x

and y is a marker edge and the modified S-components are marked S-components.

The set of marked S-components constitute the marked S-decomposition of G.

Note. The original graph G can be recovered from its marked X-decomposition

by unioning the marked S-components and then deleting the marker edge. This is

illustrated in Figure 9.7 where the 2-vertex cut S is given by solid dots (top), the
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marked S-components are given (middle), and the recovery of G is given (bottom).

Figure 9.7

Theorem 9.9. Let G be a 2-connected graph and let S be a 2-vertex cut of G.

Then the marked S-components of G are also 2-connected.

Note/Definition. By Theorem 9.9, a 2-connected graph G with a 2-vertex cut

S can be decomposed into marked S-components that are also 2-connected. If a

marked S-component itself has a 2-vertex cut then this component can be further

decomposed by Theorem 9.9. So by iterating this process, G can be decomposed

into 2-connected graphs which do not have 2-vertex cuts (with the caveat that the

components are not connected components, but instead are marked X-components

for some set S of two vertices of G). This allows us to create a decomposition

tree of G reflecting the repeated applications of Theorem 9.9. This is more like a



9.4. Three-Connected Graphs 3

family tree than a graph theory tree! The “last descendants” in the decomposition

tree are the marked S-components which do not have 2-vertex cuts (so the last

descendants, or leaves of the decomposition tree, are either 3-connected or are

graphs whose underlying graph is a complete graph on 3 vertices; notice that K3

has connectivity 2 by Note 9.1.A but that it does not have a vertex cut of size 2

because Theorem 9.2 and equation (9.4) do not apply to complete graphs). The

3-connected leaves of the decomposition tree are called 3-connected components of

G. Graph G is the root of the decomposition tree. In Figure 9.8, the decomposition

tree of a 2-connected graph with a 2-vertex cut is given.

Figure 9.8
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Note 9.4.A. In the process of creating the decomposition tree of G, there may be

multiple choices for a 2-vertex cut. In Exercise 9.4.1 it is to be shown by example

that different leaves may result from different choices of 2-vertex sets. However,

it was shown by W. H. Cunningham and J. Edmonds in “A Combinatorial De-

composition Theory,” Canadian Journal of Mathematics, 32, 734–765 (1980) that

any two applications of the procedure always result in the same set of 3-connected

components (but possibly with different edge multiplicities). Cunningham and Ed-

monds paper is available online on the Canadian Journal of Mathematics webpage

(accessed 1/10/2021).

Note. We can use the idea of a decomposition tree to gain insight on The Cycle

Double Cover Conjecture (Conjecture 3.9). In Exercise 9.4.2 it is to be shown that

if G is 2-connected with 2-vertex cut S such that each marked S-component of G

has a cycle double cover then so has G. Now 2-connected graphs on at most three

vertices have cycle double covers (easily verified by checking such graphs), so if The

Cycle Double Cover Conjecture is true for all 3-connected graphs (and hence is true

for each type of leaf in the decomposition tree), then it is true for all 2-connected

graphs. If a graph has connectivity 1 then it has a cut vertex (which is also a

separating vertex) and we can consider The Cycle Double Cover Conjecture on the

(smaller) components that result from the separation. So the smallest (in terms

of the number of vertices) possible counterexample to The Cycle Double Cover

Conjecture must be 3-connected (for a counterexample that is 2-connected and not

3-connected has a 3-connected component that is small [in terms of vertices] and

also a counterexample). In 1975 and 1976, P. A. Kilpatrick and F. Jeager proved

https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/combinatorial-decomposition-theory/7D1C38CA2A3408CAFE4490276794AA78
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that every 4-edge-connected graph has a cycle double cover (see Bondy and Murty’s

Theorem 21.24). So if a counterexample exists, then the one with fewest vertices

must have connectivity precisely 3.

Note. In Chapter 10, “Planar Graphs,” we will classify graphs as planar in terms

of the existence of certain subgraphs (see Kuratowski’s Theorem, Theorem 10.30).

The next result plays a central role. This is due to Carsten Thomassen in 1981;

Thomassen is a coauthor, along with Bojan Mohar, of Graphs on Surfaces; Bal-

timore: Johns Hopkins University Press (2001). Notes based on Thomassen and

Mohar are available online as supplements to this course.

Theorem 9.10. Let G be a 3-connected graph on at least five vertices. Then G

contains an edge e such that G/e is 3-connected.

Note. We need a lemma to prove Theorem 9.10.

Lemma 9.11. Let G be a 3-connected graph on at least five vertices, and let

e = xy be an edge of G such that G/e is not 3-connected. Then there exists a

vertex z such that {x, y, z} is a 3-vertex cut of G.

Note. We are now ready for the proof of Theorem 9.10.

https://faculty.etsu.edu/gardnerr/5340/notes-Mohar-Thomassen.htm
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Note. Theorem 9.10 shows that a 3-connected graph G (on at least five vertices)

has an edge e such that the contraction of the edge yields a 3-connected graph G/e.

We now introduce a sort of inverse of the contraction which we then show preserves

the property of 3-connectedness.

Definition. Let G be a 3-connected graph and let v be a vertex of G of degree at

least four. Split v into two vertices, v1 and v2, add a new edge e between v1 and

v2, and distribute the edges of G incident to v among v1 and v2 in such a way that

v1 and v2 each have at least three neighbors in the resulting graph H. The graph

H is an expansion of G at v.

Note. Since v1 and v2 are adjacent to each other, then each picks up at least two

edges which were incident to v (which is why v needs to be degree at least four).

An example of the expansion of G at v is given in Figure 9.10. If we take such an

expansion H, then we have H/e ∼= G so that expansion and contraction are, in a

sense, inverses of each other. The following is a kind of converse of Theorem 9.10.

Figure 9.10. An expansion of graph G at vertex v.
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Theorem 9.12. Let G be a 3-connected graph, let v be a vertex of G of degree at

least four, and let H be an expansion of G at v. Then H is 3-connected.

Note. By Theorem 9.10 and Theorem 9.12, every 3-connected graph G can be

obtained by starting with a K4 and adding edges and vertex expansions. That is,

given a 3-connected graph G, there exists a sequence G1, G2, . . . , Gk of graphs such

that (i) G1 = K4, (ii) Gk = G, (iii) for 1 ≤ i ≤ k − 1, Gi+1 is obtained by adding

an edge to Gi or by expanding Gi at a vertex of degree at least four.
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