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Chapter 12. The Cycle Space

and Bond Space

of J. A. Bondy and U. S. R. Murty’s

Graph Theory with Applications (1976)

Note. In Section 2.6. Even Subgraphs of J. A. Bondy and U. S. R. Murty’s Graph

Theory, Graduate Texts in Mathematics #244 (Springer, 2008), the edge space of a

graph G is defined as the vector space over scalar field GF (2) ∼= Z2 with vectors as

sets of edges. With E(G) as the power set of the edge set of G, E(G) = P(E(G)), we

define the the vector sum of E1, E2 ∈ E(G) as the symmetric difference E1 + E2 =

E14E2. We define scalar multiplication as 0E1 = ∅ and 1E1 = E1. In Exercise

2.6.2 of that source, it is to be shown that E(G) is, in fact, a vector space and it

is isomorphic to (GF (2))|E(G)| = (GF (2))E. If E(G) = {e1, e2, . . . , em} then the

standard basis for the edge space is {e1}, {e2}, . . . , {em}. In Theorem 2.6.A it is

shown that all even subgraphs of G form a subspace of the edge space, called the

cycle space. In Theorem 2.6.B it is shown that all edge cuts of G form a subspace of

the edge space, called the bond space. These names arrive from generating sets of

the spaces. In Exercises 2.6.4(a) and 2.6.4(b) it is to be shown that the cycles of G

generate the cycle space of G and the bonds of G generate the bond space of G. In

Exercise 2.6.4(c) it is to be shown that the bond space of G is the row space of the

incidence matrix M of G over GF (2), and the cycle space of G is the orthogonal

complement (in the edge space) of the row space. In these supplemental notes, we
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cover Section 12.1, Circulations and Potential Differences, from J. A. Bondy and

U. S. R. Murty’s Graph Theory with Applications (Macmillan Press Ltd., 1976).

This will give an alternative proof of the graduate text’s Exercise 2.6.4(c).

Note. In Section 4.3. Fundamental Cycles and Bonds of Bondy and Murty’s

graduate text, a “fundamental cycle” and a “fundamental bond” with respect to a

given spanning tree of a connected graph are defined. In Exercise 4.3.6(a) it is to

be shown that, for a given spanning tree T of a connected graph, the fundamental

cycles with respect to T form a basis of the cycle space and the fundamental bonds

with respect to T form a basis of the bond space.

Supplement. Section 12.1. Circulations and

Potential Differences

Note. In this supplement, we define circulation and potential difference in a di-

graph D and use these ideas to discuss the cycle space and bond space of D. In

the process, we find the dimensions of these spaces.

Definition. Let D be a digraph. A real-valued function f on the arc set A(D) = A

is a circulation in D if it satisfies the conservation condition f−(v) = f+(v) for all

v ∈ V , where

f+(v) =
∑

a∈A, a is an arc from v

f(a) and f−(v) =
∑

a∈A, a is an arc to v

f(a).
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Note. If D represents an electrical network (which we explore in Chapter 20 of

Bondy and Murty’s graduate text), then circulation f represents the circulation of

currents in D. An example of a circulation is given in Figure 12.1.

Note 12.1.A. If f and g are any two circulations on D and r ∈ R, then f + g and

rf are also circulations because for all v ∈ V we have

(f + g)−(v) = f−(v) + g−(v) = f+(v) + g+(v) = (f+ + g+)(v)

and

(rf)−(v) = r(f−(v)) = r(f+(v)) = (rf)+(v).

So the conservation condition holds for f+g and rf as well. So the set of circulations

on D is closed under (vector) addition and (scalar) multiplication. Therefore the

circulations on D form a vector space which we denote as C.

Note 12.1.B. Let C be a cycle in digraph D (that is, the edges a subgraph of D

whose underlying undirected graph is a cycle). Consider an assigned orientation

of C that makes it a directed cycle and let C+ denote the set of arcs of C whose
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direction agrees with this orientation. Define the function fC on arc set A of D by

fC(a) =


1 if a ∈ C+

−1 if a ∈ C \ C+

0 if a 6∈ C.

Then fC satisfies the conservation condition, because (1) if the two arcs incident

with vertex v in cycle C go in the same direction as the directed cycle then f−(v) =

f+(v) = 1, (2) if the two arcs incident with vertex v in cycle C go in the opposite

direction as the directed cycle then f−(v) = f+(v) = −1, and (3) if one arc incident

with vertex v in cycle C goes in the same direction as the directed cycle and the

other arc incident with vertex v in cycle C goes in the opposite direction as the

directed cycle then f−(v) = f+(v) = 0. Figure 2.1 illustrates this with the cycle

given by bold arcs and the assigned orientation given by the curved arc at the

upper left:

Definition. The vector space of Note 12.1.A is the cycle space of digraph D.



Supplement. Circulations and Potential Differences 5

Note. We’ll see later that each circulation on D is a linear combination of the

circulations associated with cycles (again, the edges a subgraph of D whose under-

lying undirected graph is a cycle). This is the reason for the term “cycle space” in

the previous definition.

Definition. Given a function p on the vertex set V of digraph D, define the

function δp on the arc set A of D such that for arc a ∈ A, where a has tail x and

head y, then δp(a) = p(x)− p(y). Function g on A is a potential difference in D if

g = δp for some function p on V .

Note. If D is thought of as an electrical network with potential p(v) at v, then

δp is the potential difference along the wires of the network (thus the terminology

“potential difference”). Figure 12.3 gives an example of a function p on the vertices

of D and the corresponding potential difference δp on the arcs of D.

Note 12.1.C. Let B denote the set of all potential differences on digraph D.

Notice that a sum and a scalar multiple of a potential difference is again a potential
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difference. This is because

g1(a) + g2(a) = δp1(a) + δp2(a) = (p1(x)− p1(y)) + (p2(x)− p2(y))

= (p1(x) + p2(x))− (p1(y) + p2(y)) = δ(p1 + p2)(a)

and

rg(a) = rδp(a) = r(p(x)− p(y)) = (rp(x)− rp(y)) = δ(rp)(a).

So the set of potential differences on D is closed under (vector) addition and (scalar)

multiplication. Therefore the potential differences on D form a vector space which

we denote as B.

Note 12.1.D. For S a nonempty subset of the vertex set of digraph D, denote

S = V \ S. Let B = D[S, S] = [S, S] be a bond of D (that is, a minimal edge cut).

Define gB by

gB(a) =


1 if a ∈ (S, S)

−1 if a ∈ (S, S)

0 if a 6∈ B,

where (S, S) is the set of arcs in D with tail in S and head in S (and similarly for

(S, S)). Then gB = δp where p(v) =

 1 if v ∈ S

0 if v ∈ S.
Figure 12.4 below gives a

potential difference associated with the bond given by bold arcs. The set S consists

of the two vertices in the upper right of the digraph.
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Definition. The vector space of Note 12.1.C is the bond space of digraph D.

Note. We’ll see later that each potential difference on D is a linear combination of

potential differences associated with bonds. This is the reason for the term “bond

space” in the previous definition.

Definition. With each vertex v of digraph D, define the function mv on the arc

set A of D by

mv(a) =


1 if a is a link and v is the tail of a

−1 if a is a link and v is the head of a

0 otherwise.

(Recall that a link is a nonloop.) The incidence matrix of D is the matrix M whose

rows are indexed by the vertices of D and whose columns are indexed by the arcs

of D, and the (v, a) entry of M is mv(a).
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Note. Figure 12.5 gives an example of a small digraph and its incidence matrix.

Note. Next, we will relate the incidence matrix of digraph D to the row space and

its orthogonal complement in the edge space. First, we illustrate the fact that a

linear combination of the rows of the incidence matrix M is a potential difference.

Consider the following figure, which is parts of Figures 12.3 and 12.5.

Here, the rows of M are [1, 0, 1, 0, 0], [−1, 1, 0,−1, 0], [0, 0,−1, 1, 1], [0,−1, 0, 0,−1].
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Consider the linear combination

2[1, 0, 1, 0, 0]− [−1, 1, 0,−1, 0]+4[0, 0,−1, 1, 1]+3[0,−1, 0, 0,−1] = [3,−4,−2, 5, 1].

This gives the potential difference g on the arcs of g(a) = 3, g(b) = −4, g(c) = −2,

g(d) = 5, g(e)− 1 (that is, [g(a), g(b), g(c), g(d), g(e)] = [3,−4,−2, 5, 1]), as shown

in the figure (left). Notice that the coefficients in the linear combination are just

the values of p on the vertices: p(x) = 2, p(u) = −1, p(v) = 4, and p(y) = 3, as in

the figure (left).

Theorem 12.1. Let M be the incidence matrix of a digraph D. Then B is the

row space of M and C is its orthogonal complement.

Note. As seen in the proof of Theorem 12.1, the bond space B is the row space

of incidence matrix M and the cycle space C is the nullspace of M. By the rank

equation, we have that the dimension B plus the dimension of C equals the number

of columns of M (namely, it equals the number of arcs in D). For more on the

vector spaces associated with a matrix, see my online notes for Linear Algebra

(MATH 2010) on Section 2.2. The Rank of a Matrix.

Definition. The support of a function f on A is the set of elements of A at which

the value of f is nonzero. We denote the support of f by ‖f‖.

https://faculty.etsu.edu/gardnerr/2010/c2s2.pdf
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Note. You also encounter the support of a function in Lebesgue integration theory.

See my online notes for Real Analysis 1 on Section 4.3. The Lebesgue Integral of

a Measurable Nonnegative Function. Here, functions of finite support (i.e., those

that nonzero on a set of finite measure) are used in connection with sets defined on

a set of finite measure. In our setting, we consider functions defined finite sets, so

measure is not of concern here. However, we can relate the support of circulations

and potential differences to cycles and bonds, respectively, as follows.

Lemma 12.2.1. If f is a nonzero circulation (that is, f is not identically zero),

then ‖f‖ contains a cycle.

Lemma 12.2.2. If g is a nonzero potential difference (that is, g is not identically

zero), then ‖g‖ contains a bond.

Note. In Theorem 12.1 we have a spanning set for the bond space (it is the rows

of the incidence matrix M) and since the cycle space is the nullspace of M then we

can find a spanning set for it as well. We are interested in bases for these spaces,

so we introduce the following.

Definition. A matrix B is a basis matrix of B if the rows of B form a basis for B;

a basis matrix of C is similarly defined.

https://faculty.etsu.edu/gardnerr/5210/notes/4-3.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/4-3.pdf
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Note. If R is a matrix whose columns are labeled with the elements of set A and

if S ⊆ A, then we denote the submatrix of R consisting only of those columns

of R labeled with elements in S as R|S. We read R|S as “matrix R restricted

to columns in S.” In the next result, we take a step in the direction of linear

independence (and hence in the direction of finding bases for B and C. We start

with the incidence matrix M of digraph D which has rows indexed by the vertices

of D and columns indexed by the arcs of D.

Theorem 12.2. Let B and C be basis matrices of B and C, respectively. Then

for any S ⊆ A:

(i) the columns of B|S are linearly independent if and only if S is acyclic, and

(ii) the columns of C|S are linearly independent if and only if S contains no bond.

Note. Now that we can classify linearly independent columns of B and C, we can

find maximal linearly independent sets of columns of these matrices, and hence we

can find the dimensions of B and C.

Corollary 12.2. Let D be a digraph. The dimensions of the bond space B and

the cycle space C are given by dim(B) = ν − ω and dim(C) = ε− ν + ω, where ν is

the number of vertices of D, ε is the number of arcs of D, and ω is the number of

connected components of D.



Supplement. Circulations and Potential Differences 12

Note 12.1.E. Let T be a maximal forest of digraph of D. If a is an arc of the

complement of T , T , then (because T is maximal) T + a contains a unique cycle

(that is, a digraph whose underlying graph is a cycle). In the terminology of Bondy

and Murty’s graduate level text, T would be called the coforest of T (see Section

4.3. Fundamental Cycles and Bonds of that reference). Let Ca denote this cycle and

let fa = fCa
denote the circulation corresponding to Ca, as given in Note 12.1.B,

defined so that fa(a) = fCa
(a) = 1 (that is, choose the orientation of Ca as described

in Note 12.1.B such that this fa(a) = 1). Let C be the (ε− ν + ω)× ε whose rows

are fa where a ∈ T (so the rows are of the form [fa(a1), fa(a2), . . . , fa(aε)]). Now

C|T is an identity matrix; notice fa(a) = 1 and fa(b) = 0 for b ∈ T and b 6= a.

Since T is a maximal forest, then by Exercise 2.2.4 of Bondy and Murty’s Graph

Theory with Applications or by Exercise 4.1.1 of Bondy and Murty’s graduate level

Graph Theory, T has ν − ω arcs. Hence T contains ε − (ν − ω) = ε − ν + ω arcs

and hence rank(C) = ε− ν + ω. Also, each row of C is a circulation by the choice

of fa = fCa
. So the ε − ν + ω rows of C are linearly independent and, since each

is a circulation, the row space of C is the cycle space C; that is, C so constructed

is a basis matrix for C. This is similar to the approach in the graduate level text’s

Section 4.3. Fundamental Cycles and Bonds (though undirected connected graphs

are considered there); the cycles Ca here correspond to the “fundamental cycles

with respect to T” there. Figure 12.6(a) below gives a tree (with bold arcs) in a

digraph, and Figure 12.6(b) gives the basis matrix of C corresponding to the tree.

Notice that C|T = C|{d, e} is a 2× 2 identity matrix.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-4-3.pdf
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Note 12.1.F. We now turn our attention to the bond space. If a is an arc of T ,

then T +a contains a unique bond (by Theorem 2.6(ii) of Bondy and Murty’s Graph

Theory with Applications or by Lemma 4.3.A and Note 4.3.B of Bondy and Murty’s

graduate level Graph Theory in Section 4.3. Fundamental Cycles and Bonds). Let

Ba denote this bond and let ga = gB be the potential difference corresponding to

Ba, as given in Note 12.1.D, defined so that ga(a) = 1 (this is called the fundamental

bond with respect to T and a in the graduate level text in Section 4.3. Fundamental

Cycles and Bonds, where graphs are considered, as opposed to digraphs). Now B|T

is an identity matrix; notice by Note 12.1.D that gB(a) = 1 and gB(a) = 0 if a 6∈ B.

The (ν − ω) × ε matrix B whose rows are the ga for a ∈ T is, analogous to the

cycle space case above, a basis matrix of the bond space B called the basis matrix

corresponding to T . Figure 12.6(c) gives an example for the tree of Figure 12.6(a).

Notice that B|T = B|{a, b, c} is a 3× 3 identity matrix.
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